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Tensors

§ 1.1 Tensor Definitions

Definition: If V is a vector space over R or C, we denote the k fold product V k as k products
of V . A function

T : V k → R

is called multilinear if for each j between 1 and k,

T (v1, ..., vj + v′j , ..., vk) = T (v1, ..., vj , ..., vk) + T (v1, ..., v
′
j , ..., vk)

and
T (v1, ..., av

′
j , ..., vk) = aT (v1, ..., v

′
j , ..., vk).

A multi-linear function is called a k−tensor on V and the set of all k−tensors becomes a vector
space we will denote by T k(V ). So for S, T ∈ T k(V ) and a ∈ F some field (usually either the reals
or complex), one has

(S + T )(v) = S(v) + T (v)

and
(aS)(v) = a · S(v).

Here v = (v1, v2, ..., vk) ∈ V k. Naturally, one would like some well-defined operation for members
of difference dimension vector spaces of tensors.

Definition: Let’s say that S ∈ T k(V ), T ∈ T l(V ). Define the tensor product S ⊗ T ∈ T k+l(V )
via

S ⊗ T (v1, ..., vk, vk+1, ..., vk+l) := S(v1, ..., vk) · T (vk+1, ..., vl)

It is worth noting the operation ⊗ is non-commutative. It is left to the reader to verify that

(S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T

S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2

(aS)⊗ T = S ⊗ (sT ) = a(S ⊗ T )

(S ⊗ T )⊗ U = S ⊗ (T ⊗ U)

For the last property, note that the associativity will holds for any finite length cross product. Note
that for k = 1, T 1(V ) is the dual space V ∗. Furthermore, our operation ⊗ allows us to express
T k(V ) in terms of T 1(V ). That is, 1-forms can be used to build up higher dimensional forms. Also
we have yet to define what a ”form” is so hang tight.

A similar construction for dual spaces can be made for tensors.

Definition: If
F : V →W

is a linear transformation, then tensor induced linear transformation is given as

f∗ : T k(W ) → T k(V )
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and is defined via
f∗(T (v)) = T (f(v)).

One can easily verify using properties of ⊗ that

f∗(S ⊗ T ) = f∗S ⊗ f∗T.

One example of tensors is the inner product operation ⟨⟩ ∈ T 2(Rn).

Note that the determinant is also a tensor. Namely det ∈ T n(Rn). Recall that when interchanging
two rows whilst keeping all else fixed results in a determinant with opposite sign. This leads us to
our next definition.

Definition: A k−tensor ω ∈ T k(V ) is called an alternating tensor if

ω(v1, ..., vi, .., vj , ..., vk) = −ω(v1, ..., vj , .., vi, ..., vk)

Observe that the set of alternating k−tensors is a subspace Λk(V ) of T k(V ). So then if T ∈ T (V ),
then define

Alt(T )(v1, ..., vk) :=
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), ..., vσ(k))

where Sk is the permutation group on k elements. It can be left as an exercise to the reader to
verify that

1. If T ∈ T k(V ), then Alt(T ) ∈ Λk(V ).

2. If ω ∈ Λk(V ), then Altω = ω.

3. If T ∈ T k(V ), then Alt(Alt(T )) = Alt(T ).

§ 1.2 Wedge Product

The issue with the operation ⊗ is that in the subspace of alternating tensors, it need not
be closed.

Definition: We therefore define a new product ∧ called the wedge product.That is if ω ∈ Λk(V ), η ∈
Λl(V ), then ω ∧ η ∈ Λk+l(V ) is defined via

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η).

The wedge product ∧ comes with the following properties:
<back2top>
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Holomorphic and Meromorphic 1-forms

From one-variable Complex Analysis recall that the method of integrating was using the contour
integration. We focus our attention to a concept known as differential forms. This is the concept
required to integrate over a manifold such as a Riemann surface.

§2.1 Holomorphic 1-Forms

Definition: A holomorphic 1-form on an open subset U ⊆ C is an expression ω of the form

ω = f(z)dz.

where f is holomorphic on U . We say ω is a holomorphic 1-form in the coordinate z. (It should
be noted that constant functions are 0−forms.) We would like to transfer this notion over to
integrating over a given Riemann surface. We require a condition on domains that overlap. This
notion will be made rigorous in the following definition.

Definition: Suppose that ω1 = f(z)dz and ω2 = g(w)dw where f, g are holomorphic on V1, V2 ⊆ C
respectively. Let

T : V2 → V1

be defined via
z := T (w).

We say that ω1 transforms to ω2 under T if

g(w) = f(T (w)) · T ′(w).

Here, when this transformation is made one typically writes

dz = T ′(w)dw.

If T is 1− 1, then there exists a function

S : V1 → V2

such that S transforms ω2 into ω1 if and only if T sends ω1 to ω2. We can now transform this
construction to Riemann surfaces.

Definition: Let X be a Riemann surface. A holomorphic 1-form on X is a collection of holomorphic
1-forms {ωϕ}, one for each chart

ϕ : U → V

in the coordinate of the target V such that if two charts

ϕj : Uj → Vj

for j = 1, 2 have domains which overlap, then the associated holomorphic 1-form ωϕ1 transforms to
ωϕ2

under the change of coordinate mapping

T = ϕ1 ◦ ϕ−1
2 .

In order to define a holomorphic 1-form on a Riemann surface one only needs to give a holomorphic
1-form on the chart of certain atlases. This will be formalized rigorously as follows.
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Lemma 1 Let X be a Riemann surface and A a complex atlas on X. Suppose holomorphic
1-forms are given for each chart of this atlas, which transfer to each other on overlapping
domains. Then there exists a unique holomorphic 1-form on X extending these holomorphic
1-forms on each of the charts of A.

Proof. Let ψ be a chart of X not in A. We need to define the holomorphic 1-form with respect to
ψ with

ψ : U → C,

or equivalently, in terms of our local coordinate w of ψ. Fix some p ∈ U . Choose a chart ϕ in A
with

ϕ : V → C

such that p ∈ V . Here, let z be the associated local variable. Let f(z)dz be the holomorphic 1-form
with respect to ϕ. Then we can use the transformation property to take the holomorphic 1-form of
ψ to be

g(w) := f(T (w))T ′(w).

Here z = T (w) described the change of coordinates ϕ ◦ ψ−1. We must only check this definition is
independent of our choice of ϕ and gives a 1-form with respect to ψ at every point in V . As long
as all of these holomorphic 1-forms transform to each other in the sense we defined above, and thus
define a holomorphic 1-form on X. This 1-form is then unique.

<back2top>

§2.2 Meromorphic 1-Forms

In the same fashion we may define a meromorphic 1-form.

Definition: A meromorphic 1−form on an open subset U ⊆ C is an expression ω of the form

ω = f(z)dz,

where f is meromorphic on U . We say that ω is a mermomorphic 1−form in the coordinate z.
Compatibility definitions agree with those of holomorphic 1-forms. This is formulated as follows.

Definition: Suppose that ω1 = f(z)dz and ω2 = g(w)dw where f, g are meromorphic on V1, V2 ⊆ C
respectively. Let

z = T (w)

define a holomorphic mapping from V2 into V1. We say ω1 transforms to ω2 under T if

g(w) = f(T (w))T ′(w).

Transforming the notion of meromophic 1-forms from the plane to a Riemann surface is done
similarly as for holomorphic functions.

Definition: Let X be a Riemann surface. A meromorphic 1−form on X is a collection {ωϕ} of
meromorphic 1-forms, one for each chart

ϕ : U → V
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in the variable of the target V , such that if two charts

ϕj : Uj → Vj ,

for j = 1, 2, have overlapping domains, then the associated meromorphic 1-form ωϕ1
transforms to

ωϕ2
under the change of coordinate mapping

T = ϕ1 ◦ ϕ−1
2 .

This leads us to our next lemma.

Lemma 2 Let X be a Riemann surface and A a complex atlas on X. Suppose that
meromorphic 1-forms are given for each chart of A, which transfer each other on
their domains. Then there exists a unique meromorphic 1-form on X extending these
meromorphic 1-forms on each of the charts of A.

Let ω be a meromorphic 1-form defined in a neighborhood of some point p. If we choose a local
coordinate chart centered at p, we can write

ω = f(z)dz

where f is meromorphic at z = 0.

Definition: The order of ω at p, denoted by ordp(ω) is the order of the function at z = 0.

Note that ordp(ω) is well-defined and is independent of choice of coordinate chart. A meromorphic
1-form ω is holomorphic at p if and only if ordp(ω) ≥ 0. We say p is a zero of ω of order n if the
order is strictly positive. We say p is a pole of ω of order n if ordp(ω) = −n < 0. Furthermore, note
the set of zeroes and poles of a meromorphic functions forms a discrete set as apposed to continuous.

§2.3 Defining Meromorphic Functions and Forms with a Formula

The definitions of forms on holomorphic or meromorphic functions implies that in order to
define ω on some Riemann surface X, one must give local expressions for ω, in the form

f(z)dz,

in each chart of an atlas A. In face one can use a single formula in a single chart. This is enough
to determine ω by the Identity theorem for meromorphic functions and forms: If two meromorphic
1-forms agree on some open domain, they must be identical.

Of course, this definition does not guarantee that the forms exists on all of X. One can have
the case that given a meromorphic local expression of the form

f(x)dz

in one chart, then when one transforms this local expression to another chart, the meromorphicity
may fail to get carried over. I.e., the meromorphic 1-form

exp(z)dz
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on the finite chart C of C∞ does not extend meromorphically to a neighborhood of ∞.
Additionally, one may encounter the following issue: The local expression many not transform

uniquely to all other points of X. I.e., consider the meromorphic 1-form

z
1
2 dz

defined on the plane with the negative real line removed, where the branch of the square root is
chosen such that √

1 = 1.

This can be extended to the negatives reals, but not in the unique sense. Thus there is no
meromorphic function on the nonzero complex numbers.

However, it is convenient to use a single formula in one specified chart to define a meromorphic
1-form ω, and one can check that the formula transforms uniquely to meromorphic 1-form on all of
X. Furthermore, meromorphic functions can be determined by a single chart as we have seen before.

§2.4 Conjugate of z

We can for now relax the meromorphic and holomorphic conditions for 1-forms and obtain
this notion of C∞ 1-forms. Locally, these should be the expressions

f(x, y)dx+ g(x, y)dy

where x, y are local real variables and
z = x+ iy.

However we can completely use z and it’s complex conjugate z instead of real and imaginary parts
x, y. We can do this since we have

x =
z + z

2
, y =

z − z

2i
.

Here
z = x+ iy, z = x− iy,

such that any function expressible in terms of x, y is expressible in terms of z, z and vis versa. Note
then that since

dz = dx+ idy,dz = dx− idy.

We have the differentials

dx =
dz + dz

2
,dy =

dz − dz

2i
.

And so any expression one would like to construct of the form

f(x, y)dx+ g(x, y)dy,

can instead be written as
u(z, z)dz + v(z, z)dz.
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We can formulate this a bit more rigorously as follows. We carry the principle on over to partial
derivatives as well. Given a C∞ function f(x, y), we have that

∂f

∂z
=

∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z

=
1

2

∂f

∂x
+

1

2i

∂f

∂y
,

and

∂f

∂z
=

∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z

=
1

2

∂f

∂x
− 1

2i

∂f

∂y
.

We can now define the differential operators ∂
∂z ,

∂
∂z via

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

With this given notation we require a C∞ function f to be holomorphic on some open subset U ⊆ C
if and only if

∂f

∂z
= 0,

since this is equivalent to the Cauchy-Riemann equations for f .

Definition: A C∞ 1−form on an open subset U ⊆ C is an expression ω of the form

ω = f(z, z)dz + g(z, z)dz,

where f, g are C∞ functions on U . We say that ω is a C∞ 1-form in the coordinate z. This comes
with the following transformation rule.

Definition: Suppose that ω1 = f1(z, z)dz + g1(z, z)dz is a C∞ 1-form in the coordinate z, defined
on some open U1 ⊆ C. Also suppose that ω2 = f2(w,w)dw + g2(w,w)dw is a C∞ 1-form in the
coordinate zis a C∞ 1-form in the coordinate w, defined on some open U2 ⊆ C. Let z = T (w)
define a holomorphic mapping

V2 → V1.

We say that ω1 transforms to ω2 under T if

f2(w,w) = f1(T (w), T (w))T
′(w),

and
g2(w,w) = g1(T (w), T (w))T

′(w).
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Note that the definition is made in this fashion by differential formula for the chain rule. That is,
if z = T (w), then dz = T ′(w)dw and dz = T ′(w)dz. Furthermore, note that the dz part transforms
into dw and the dz into the dw: there is no ”mixing” of the two halves of the expression upon a
change of coordinates. This is the real reason we use z and its conjugate as apposed to x, y. We
use the same method as before to transport this notion to a Riemann surface.

Definition: Let X be a Riemann surface. A C∞ 1-form on X is a collection of C∞ 1-forms
{ωϕ}, one for each chart ϕ : U → V in the variable of the target V . such that if two charts

ϕj : Uj → Vi

for j = 1, 2, have overlapping domains, then the associated C∞ 1-form ωϕ1
transforms to ωϕ2

under
the change of coordinate mapping

T = ϕ1 ◦ ϕ−1
2 .

This leads us to another lemma.

Lemma 3 Let X be a Riemann surface and A a complex atlas on X. Suppose that C∞

1-forms are given for each chart of A, which transform to each other on their common
domains. Then there exists a unique C∞ 1-form on X extending these C∞ 1-forms on
each of the charts of A.

The next section is devoted to types of 1-forms.

§2.5 Types of 1-forms

Since under transformation by holomorphic change of coordinates, the dz and dz of the C∞

1-form are preserved, we may split the definitions into two separate definitions, namely of C∞

1-forms with only dz parts, and ones with only dz parts.

Definition: A C∞ 1-form is of type (1, 0) if it is locally of the form f(z, z)dz. It is of type (0, 1) if
it is locally of the form g(z, z)dz.

Note that the type is preserved over domains that overlap. Furthermore, note any holomorphic
1-form is of type (1,0). A meromorphic 1-form would be of this type except it is not C∞ at its poles.

§2.6 C∞ 2-forms

One typically introduces 1-forms in order to integrate along a line or a path in space. Similarly
one would like to integrate over a 2-dimensional piece of a Riemann surface. The integrand in this
case would be a 2-form.

Definition: A C∞ 2-form on an open subset U ⊆ C is an expression η of the form

η = f(z, z)dz ∧ dz,

where f ∈ C∞(U).

<back2top>
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Operations on forms

<back2top>
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