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1. Nested closed subsets of compact

Let (X, τ) be a topological space. Let E1 ⊃ E2 ⊃ ... be closed subsets of X. If X is compact, prove
that ∩i∈IEi = ∅.

Proof. Let us assume toward a contradiction that⋂
n∈N

Ei = ∅

Since for each n ∈ N we know En is closed in X and they are decreasing, we know the X \ En are
increasing. Then we have that for each n,

X ⊆
⋃
n∈N

X \ En.

By compactness of X we have the existence of a finite subet A ⊂ N such that

X ⊆
⋃
n∈A

X \ En

= X \ EM ,

Where M ∈ A is the maximal element in terms of set containment. But this implies

En = ∅

For every n such that 1 ≤ n ≤M , contradicting non-emptiness.

<back2top>
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2 Compactness

(a) Closed subspaces of compact topological spaces need be compact.

Proof. Let X be a compact topological space. Suppose Y ⊆ X is closed. We would like to show
that Y is compact. Let {Uα}α∈A be an open cover of Y . That is,

Y ⊆
⋃
α∈A

Uα.

As Y ⊆ X is closed, its complement in X, X\Y , is open in X. Moreover, the union of the Uα
together with X\Y forms an open cover for X, i.e.,

X ⊆
⋃
α∈A

Uα ∪X\Y.

Since X is compact, we know there exists a finite subset B ⊆ A such that

X ⊆
⋃
i∈B

Uαi ∪X\Y

And since Y ⊆ X we have that
Y ⊆

⋃
i∈B

Uαi

thus we have found a finite subcover of {Uα} that cover Y and so Y is compact as needed.

<back2top>

(b) Compact subspaces of Hausdorff topological spaces need be closed.

Proof. Let X be a Hausdorff topological space. Suppose Y ⊆ X is compact. We wish to show Y is
closed in X. It suffices to show its complement X\Y is open in X. Let x ∈ X\Y , as X is Hausdorff,
for each y ∈ Y there exists open sets Uy ⊆ X\Y , Vy ⊆ Y with x ∈ Uy, y ∈ Vy such that

Uy ∩ Vy = ∅.

Since Vy ⊆ Y is open, {Vy | y ∈ Y } is an open cover for Y , that is,

Y ⊆
⋃
y∈Y

Vy.

By compactness of Y there exists a finite subset A ⊆ Y such that

Y ⊆
⋃
y∈A

Vy = V.

Then the finite intersection U =
⋂
y∈A Uy is an open neighborhood of x disjoint from V , namely

x ∈ U ⊆ X\Y

and thus X\Y is open in X forcing Y ⊆ X to be closed as needed.
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(c) The image of a compact topological space need be compact under a continuous map.

Proof. Let f : X → Y be a continuous map between topological spaces. Suppose X is compact.
We would like to show that f(X) ⊆ Y is compact. Let {Vα}α∈A be an arbitrary open cover for
f(X). That is,

f(X) ⊆
⋃
α∈A

Vα

where Vα ⊆ Y is open for each α ∈ A. As f is continuous, we have that

f−1(Vα) ⊆ X

is open for each α ∈ A as well. Then {f−1(Vα)}α∈A is an open cover for X and since X is compact
we have the existence of a finite subset B ⊆ A such that

X ⊆
⋃
b∈B

f−1(Vb)

then it follows that
f(X) ⊆

⋃
b∈B

Vb

thus f(X) is compact.

<back2top>
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3. Regular space equivalence

(a) Define a regular space.

Proof. A topological space X is called regular or T3 if ∀x ∈ X and any closed subset F ⊂ X not
containing x, ∃ U, V ⊂ X open with x ∈ U,F ⊂ V 3

U ∩ V = ∅.

Namely, we can separate points from closed sets using open sets.

Assume X is Hausdorff. Then X is regular if and only if for every x ∈ X with neighborhood
U ⊆ X there exists V ⊆ X open with x ∈ V such that V ⊂ U .

Proof. Let X be a Hausdorff topological space. Suppose first that X is also regular. Let x ∈ X
and let Ux ⊆ X be an open neighborhood of x. Then F = X\Ux is closed by definition. Since X
is a regular space we can separate x and F with open subsets of X, that is, there exists V,W ⊆ X
open with x ∈ V, F ⊂W such that

V ∩W = ∅.

As x ∈ Ux we have that
V ∩ F = ∅

forcing V ⊆ Ux as needed.
Next suppose for each x ∈ X and open neighborhood of x say Ux ⊆ X there exists an open

neighborhood V ⊆ X with x ∈ V such that V ⊆ Ux. Let x ∈ X\F where F ⊆ X is closed. We
wish to separate these via open subsets of X. As F is closed it follows that X\F ⊆ X is open.
Then by our assumption we are guaranteed the existence of an open set V ⊆ X such that

V ⊆ X\F.

Here x ∈ V is an open neighborhood of x and similarly X\V is an open set containing F such that

V ∩X\V = ∅

thus X is regular as needed.

<back2top>
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4. Non-disjoint union of connected is connected

(a) Let {Xα}α∈I be a collection of topological spaces. If for each α ∈ I Xα is connected and⋂
α∈I

Xα 6= ∅,

then we have that ⋃
α∈I

Xα

is connected as well.

Note that this fails if we swap the conclusions union with intersection, take X1 := S1, X2 :=
{(x, y) : x = y ∈ R}, so the circle and the line, their union is connected, their intersection is two
disjoint points however.

Proof. First, Recall the Connected lemma:

Let (X, τ) be a topological space. If A ∪B is a separation of the space and Y ⊂ X is a
connected subspace, then Y lies entirely in A or B.

The proof of this is in Exercise 16. Now assume towards a contradiction that
⋃
α∈I is disconnected.

That is, there is a separation. I.e., ⋃
α∈I

Xα = A ∪B

Where A,B ∈ τ are non-empty and disjoint. Since the intersection of the Xα is non-empty, let
x ∈

⋂
α∈I Xα, then x ∈ A or in B, let us say x ∈ A. But then B is non-empty thus there exists

some y ∈ B But then y ∈ Xβ for some β ∈ I and also x ∈ Xβ contradicting the connected lemma
as Xβ is connected it must lie entirely in A or B and so

⋃
α∈I Xα is connected.

<back2top>

(b) The image of a connected space under continuous function need be connected.

Proof. Let f : X → Y be a continuous map of topological space. Suppose that X is connected. We
wish to show that f(X) is connected as well. Let us suppose towards a contradiction that f(X)
has a separation, that is,

f(X) = A ∪B

where A,B ( f(X) are both nonempty and open. Since f is continuous, f−1(A), f−1(B) ⊂ X are
both open. Moreover, their union is all of X and thus we have formed a separation of X which is
connected, a contradiction and so f(X) is connected.

<back2top>

(c) Let X,Y be connected. Show X × Y is connected in the product topology.
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Proof. Suppose X,Y are connected topological spaces. We wish to show that with respect to the
product topology, X × Y is connected as well. Fix (x0, y0) ∈ X × Y . As X is connected and
homeomorphic to the slice X × {y0}, it follows that X × {y0} is connected. Similarly, for each
x ∈ X we have that the slice {x} × Y is connected as well. We can now define

Tx = (X × {y0}) ∪ ({x} × Y )

Then
⋃
x∈X Tx is connected by part (a) as the intersection consists of (x, y0). As

⋃
x∈X Tx is all of

X × Y , we are done.

<back2top>
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5. Equivalence for closed in metric space

Let (X, d be a metric space with C ⊂ X and some p ∈ X a point. Prove C is closed if and only if
C ∩BR(p) is closed for any R > 0 where

BR(p) = {x ∈ X|d(x, p) ≤ R}.

Proof. First suppose C is closed. Since arbitrary intersections of closed spaces need be closed we
have that the intersection

C ∩BR(p)

is closed as Br(p) is closed by definition.
On the other hand suppose that for some p ∈ X and any R > 0 the intersection

C ∩BR(p)

is closed. We wish to show that C is closed, i.e., C = C. Clearly we have that C ⊆ C thus we are
left to show that C ⊆ C. So let x ∈ C be a limit point. We must show x ∈ C. As X is a metric
space we can put x in an epsilon ball, that is,

x ∈ Bε(x) := {y ∈ X | d(x, y) < ε}.

As C ∩BR(p) is closed for any R, we can take R = d(x, p) + ε. Then we have that

Bε(x) ⊂ BR(p) ⊂ BR(p).

As x is a limit point of C, Bε(x)\{x} intersects C non-trivially thus x is a limit point of C ∩BR(p)
hence x ∈ C ∩BR(p) forcing x ∈ C as needed and C is closed.

<back2top>
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6. Hausdorff & second-countable

(a) Define second-countable

Proof. A topological space X is said to be second-countable if it has a countable basis.

(b) Define Hausdorff.

Proof. A topological space X is said to be Hausdorff if for any pair of distinct elements x, y ∈ X
we can find open subsets of X say U, V with x ∈ U, y ∈ V such that

U ∩ V = ∅.

(c) Prove or disprove: Every metric space equipped with the metric topology is Hausdorff.

Proof. Let (X, d) be a metric space. Then d induces a topology on X, namely the collection of
epsilon balls, that is,

{Bε(x) | x ∈ X, ε > 0}.

This collection forms a basis for a topology on X. I claim X is Hausdorff. Let x, y ∈ X be
distinct. Then we have that d(x, y) > 0 so denote this distance by ε0. Then we have basis elements
x ∈ B ε0

2 (x), y ∈ B ε0
2 (y). It suffices to show

B ε0
2 (x) ∩B ε0

2 (y) = ∅

Suppose there exists some z ∈ B ε0
2 (x) ∪ B ε0

2 (y) then d(x, z), d(z, y) < ε0
2 . And so by the triangle

inequality we have

ε0 = d(x, y)

≤ d(x, z) + d(z, y)

<
ε0
2

+
ε0
2

= ε0

a contradiction forcing the intersection to be empty as needed thus (X, d) is Hausdorff.

(d) Prove or disprove: Every metric space equipped with the metric topology is second-countable.

Proof. Consider R as a metric space equipped with discrete metric, that is

d(x, y) = { 1 x 6= y
0 x = y

Here the basis elements consist of singleton sets. R has an uncountable number of points, the basis
(the singletons) is uncountable thus not second-countable.

<back2top>
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7. The product topology

Consider the Product space Y = Π∞n=1[0, 1] with the product topology.

(a) Prove Y is Hausdorff.

Proof. As [0, 1] is Hausdorff (It is a subspace of the reals which are Hausdorff and it is easy to check
subspaces of Hausdorff under subspace topology need be Hausdorff as well) we verify that given
a collection {(Xi, τi)}i∈I of topological spaces, if they are all assumed to be Hausdorff, then their
product

(Πi∈IXi, τX)

(for short we denote Πi∈IXi by X) is Hausdorff when τX is the product topology. Before proceeding,
small lemma:

Lemma If A,B,C are sets such that B ∩ C = ∅, then A × B ∩ A × C = ∅ as well and
this extends to uncountably infinite case as well.

Now let x, y ∈ X be distinct. Then there exists (at least one) some j ∈ I our indexing set such
that the components do not agree here, that is, for xj , yj ∈ Xj we have

xj 6= yj .

As Xj is Hausdorff, then there exists Uj , Vj ∈ τj with xj ∈ Uj , yj ∈ Vj such that

Uj ∩ Vj = ∅.

Then by the definition of the product topology, for each i ∈ I \ {j} we can take

Ui = Vi = Xi

And then define the neighborhoods of x, y as

U = Πi∈IUi, V = Πi∈IVi.

and since the Ui, Vi are disjoint at j together with our lemma we have that

U ∩ V = ∅

with x ∈ U, y ∈ V thus (X, τX) is Hausdorff as needed.

(b) Prove Y = Πn∈N[0, 1]n is separable.

Proof. To show Y is separable, we construct a countable subset that is dense in Y . Consider the
following subset of Y ,

A := {(a1, a2, ...) ∈ Y |∃N ∈ N 3 ai ∈ Q ∩ [0, 1], 1 ≤ i < N}

I.e., all sequences with finitely many rational coordinates. I claim A is dense in Y , to see this we
show every open set of Y intersects A nontrivially. Let x ∈ U ∈ τY . If x ∈ A then we are done as
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x ∈ U ∩ A. Suppose x ∈ Y \ A. As we are in the product topology, our basis elements are of the
form

Π∞n=1Un ⊂ U

Where Un = [0, 1] for all but finitely many n. And for those finitely many n we have the proper
containment Un ⊂ [0, 1]. If we let x = (x1, x2, ...), then for finitely many values, call them i, we
have

xi ∈ Ui ⊂ [0, 1]

As Q is dense in R, we have for these finite many i, there exists some rational qi ∈ Q such that

qi ∈ Ui

Then consider the point y = (y1, y2, ...) such that

yi = qi; i ≤ n, yn = xn;∀n > i

Then y ∈ A and since U was arbitrary we have that A is dense in Y .

<back2top>
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8. Continuity When restricted

(a) Let (X, τX) be a topological space. If we can write X =
⋃
n∈NWn where for each n ∈ N

f �: Wn → Y

is continuous, then
f : X → Y

is continuous.

Proof. Let
f : X → Y

be a map of topological spaces with topologies τX , τY respectively. Let V ∈ τY . Note that

f �−1k (V ) = f−1(V ) ∩Wk

∈ τX .

As f �n is continuous for every n. But then we can write

f−1(V ) =
⋃
k∈N

f−1(V ) ∩Wk

∈ τX

as any union of open need be open thus f is continuous.

(b) Let (X, τX) be a topological space. If X = A∪B where A,B are closed and f �A: A→ Y, f �B :
B → Y are continuous. Prove

f : X → Y

is continuous.

Proof. Let V ⊂ Y be closed, then just as before, since A is a subset of X, then for all subsets of Y
which V is, we have

f−1(V ) ∩A = (f |A)−1(V )

Holds for when x ∈ A and f(x) ∈ V . As V ⊂ Y is closed and the restrictions are continuous, we
have that

(f |A)−1(V ) ∩A
(f |B)−1(V ) ∩B

Are both closed in A,B respectively thus both are closed in X as well and we have

f−1(V ) = f−1(V ) ∩X
= f−1(V ) ∩ (A ∪B)

= (f−1(V ) ∩A) ∪ (f−1(V ) ∩B)

Which is a finite union of closed thus f−1(V ) ⊂ X is closed as needed thus f is continuous.
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(c) Assume X =
⋃∞
k=1Ek where the Ek are all closed in X such that each Ek → Y is continuous,

is X → Y also continuous?

Proof. False. Consider the map

f : Z→ R

where Z is endowed wuith cofinite topology and R has the standard topology. Let

Z =
⋃
n∈Z
{n}

So our Ek are just singletons of integers, then f |Ek is continuous for each k.

To see this, take C ⊂ R closed, then we have

f |−1Ek(C) = f−1(C) ∩ Ek

which is either just a singleton or the empty set both of which are closed in Z with cofinite topology.

On the other hand, f is not continuous as any open set (a, b) ⊂ R has a pull back with infinite
complement thus not open in Z with cofinite topology.

<back2top>
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9. Product Topology

(a) Define the product topology on the product X = Π∞j=1Xj .

Proof. The product topology on X is the product

Π∞j=1Uj

Where Uj ⊆ Xj are open and

Uj = Xj

∀ but finitely many j, for finite j,

Uj ( Xj

proper subset. More formally, if πβ is projection onto the βth coordinate, then

Sβ = {π−1β (Uβ)|Uβ is open in Xβ}

Then the topology generated by
⋃
β∈J Sβ is the product topology.

(b) Show the projection map pi : X1 ×X2 → Xi is an open map for i = 1, 2.

Proof. For each − = 1, 2, let τi denote the topology on Xi. Let U ∈ τα, then by the definition of
the product topology we can write

U =
⋃
j∈J

nj⋂
k=1

p−1ik,jUk,j ,

where J is an arbitrary indexing set, nj ∈ N and ik,j = 1, 2. Then for every i = 1, 2, define Vi,k,j ∈ τi
via

Vi,k,j =

{
Uk,j ; i = ik,j

Xi ; i 6= ik,j

By the definition of projection we have

p−1ik,j (Uk,j) = V1,k,j × V2,k,j .

And without any loss of generality we can suppose i = 1 and compute

p1(U) =
⋃
j∈J

p1(

nj⋂
k=1

p−1ik,j (Uk,j))

=
⋃
j∈J

p1(

nj⋂
k=1

(V1,k,j × V2,k,j))

=
⋃
j∈J

p1(

nj⋂
k=1

V1,k,j ×
nj⋂
k=1

V2,k,j)

=
⋃
j∈J

nj⋂
k=1

V1,k,j

∈ τ1

and thus p1 is an open map. The same proof works for p2.
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(c) If Y is Hausdorff and

f : X → Y

is continuous, prove the graph

∆ = {(x, f(x))|x ∈ X}

is closed in X × Y .

Proof. We show ∆c is open instead.

Let (x, y) ∈ X × Y \∆, then y 6= f(x).

As y, f(x) ∈ Y which is Hausdorff they can be separated via open sets of Y .

That is, ∃U, V ⊂ Y open with y ∈ U, f(x) ∈ V s.t.

U ∩ V = ∅

By Munkres Theorem 18.1(4) since f is continuous, ∃ W ⊆ X with x ∈W s.t.

f(W ) ⊆ V

Then W × U is an open neighborhood of (x, y) disjoint from ∆ thus X × Y \∆ = ∆c is open, and
therefore ∆ is closed.

(d) If Y is Hausdorff and

f : X → Y

is continuous, prove

G : X → X × Y

defined via

G(x) = (x, f(x))

is a closed map.

Proof. Let C ⊆ X be closed, we wish to show

G(C) ⊂ X × Y

is closed. Let (x, y) ∈ X × Y \G(C), then y 6= f(x) which are both in Y .

Since Y is Hausdorff, ∃U, V ⊆ Y both open with y ∈ U, f(x) ∈ V such that

U ∩ V = ∅

As f is continuous however, ∃W ⊆ X an open neighborhood of x such that

f(W ) ⊆ V

Then W ×U is an open neighborhood of (x, y) disjoint from G(C), thus G(C)c is open forcing G(C)
to be closed ∴ G is a closed map.

<back2top>
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10. Homeomorphisms

(a) Prove (0,1) with the subspace topology is homeomorphic to R with the standard topology.

Proof. Let

f : (0, 1)→ (−π
2
,
π

2
)

be defined via
f(x) := πx− π

2

and let
g : (−π

2
,
π

2
)→ R

be defined via
g(x) := tanx

Then
h : (0, 1)→ R

defined via

h(x) := g(f(x))

= tan(πx− π

2
)

is the desired homeomorphism with inverse defined via

h−1(x) :=
tan−1(x)

π
+

1

2

By calulus we are done.

(b) Assume X,Y are metric spaces that are homeomorphic. Prove or give coumterexample: X
complete implies Y complete, that is, is completeness preserved under cont?

Proof. Part (a)

(c) Prove [a, b) � (c, d).

Proof. First a small lemma (proof left to the interested reader; HINT: First restrict the domain,
then restrict the range.)

Lemma: If
f : X → Y

is a continuous map of topological spaces, then for any x ∈ X,

f : X \ {x} → Y \ {f(a)}

is continuous as well. Morveover, if f is a homeomorphism, then f is a homeomorphism
as well.
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Now let us assume [a, b) ∼= (c, d). Then there exists a homeomorphism

g : [a, b)→ (c, d).

By our lemma above
g : [a, b) \ {a} → (c, d) \ {g(a)}

is a homeomorphism as well. I.e.,

g : (a, b)→ (c, g(a)) ∪ (g(a), d)

is a homeomorphism. Note that the domain is still connected while the range space is clearly
disconnected and since connectedness is a topological property, this contradicts continuity of g and
thus [a, b) � (c, d) as needed. One can check that the range space in fact has a separation.

<back2top>
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11. Topology of finite point-set

Let X = {1, 2, 3, 4} be given by the topology τ = {∅, X, {1}, {1, 2}, {1, 3}, {1, 2, 3}}
(a) Show any two disjoint closed sets have disjoint open neighborhoods

Proof. By definition, the closed sets in X are taken to be the complements of the given open sets,
that is,

C = {X, ∅, {2, 3, 4}, {3, 4}, {2, 4}, {4}}
are all of the closed subspaces of X. As 4 is an element of every member of C except ∅ and ∅ is
disjoint with every non-empty set, the pairs of disjoint closed subspaces are

X, ∅

{2, 3, 4}, ∅
{3, 4}, ∅
{2, 4}, ∅
{4}, ∅

where the neighborhoodX contains each closed set except for ∅ and clearly ∅ is its own neighborhood
which is disjoint from X as needed.

(b) Show (X, τ) is not T1

Proof. Consider the elements 1, 2. The open neighborhoods of 2 are

{1, 2}, {1, 2, 3}.

Since both of these contain 1 we cannot find open sets for 1 and 2 that do not contain each other
thus (X, τ) is not T1.

(c) Let A = {1, 2, 3} ⊂ X be endowed with the subspace topology. Find disjoint closed subsets of
A that do not have disjoint neighborhoods.

Proof. As A is endowed with the subspace topology we can write out the topology on A as follows

τA = {∅, A, {1}, {1, 2}, {1, 3}}.

Then the closed subsets of A are given by

CA = {A, ∅, {2, 3}, {3}, {2}}.

Then {2}, {3} are disjoint closed sets in A. The neighborhoods of {2} are

A, {1, 2},

and the neighborhoods of {3} are
A, {1, 3}.

And since {1, 2} ∩ {1, 3} = {1} is non-empty, we have found disjoint closed subsets of A with non
disjoint neighborhoods.

<back2top>
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12. Closures connected/path

(a) If X ⊆ Z is a connected subset of a topological space, show that X ⊆ Z is connected as well.

Proof. Let X ⊆ Z be a connected subspace of a topological space. Suppose towards a contradiction
that X is not connected. Then there exists a separation of X, that is,

X = A ∪B,

A,B ∈ τX non-empty and disjoint. As X is connected, by the connected Lemma we have WLOG
that X = A∩X. As B is non-empty, it contains some b, namely b is a limit point of X and thus B
is an open set containing a limit point of X thus it must intersect X ⊂ A non-trivially contradicting

A ∩B = ∅.

Thus X is connected.

(b) Show (a) fails for path-connected subspaces.

Proof. Take the topologist’s sin curve. That is, the function

f : R+ → [−1, 1]

which is defined via

x 7→ sin(
1

x
).

Then {(x, y) | y = sin( 1
x )} is path-connected, however the closure given via

{(x, y) ∈ R2 | y = sin(
1

x
)} ∪ {0} × [−1, 1]

is not path-connected.
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13. Cofinite Topology

Let τ be the finite complement topology on R. That is, U ⊆ R is open if and only if U is empty or
R\U if finite.
(a) Is (R, τ) Hausdorff?

Proof. I claim (R, τ) is not Hausdorff. Let x, y ∈ R and U ∈ τ be a neighborhood of x. Then R\U
is finite so we can write

R\U = {p1, ..., pn}.

Similarly we can let V ∈ τ be a neighborhood of y and write

R\V = {q1, ..., qm}.

We would like for U, V to have a non-empty intersection. As R is infinite, we can find a z ∈ R such
that z 6= pi for 1 ≤ i ≤ n and z 6= qj for 1 ≤ j ≤ m. This would imply z ∈ U ∩ V and so (R, τ) is
not Hausdorff.

(b) Is (R, τ) compact?

Proof. I claim (R, τ) is compact. Let {Uα}α∈A be an arbitrary open cover for R, that is

R ⊆
⋃
α∈A

Uα.

For each α ∈ A we know R\Uα is finite, in particular we can take some β ∈ A and so R\Uβ is finite.
Then for each x ∈ R\Uβ let Ux ∈ τ be the neighborhood containing x. Then it follows that

R ⊆ Uβ ∪ {Ux | x ∈ R\Uβ}

is a finite sub-cover of our arbitrary covering thus (R, τ) is Hausdorff as needed.
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14. Sequence of closed

Let F1, F2, ... be a sequence of closed subsets of a topological space X. Suppose that for each x ∈ X
we can find a neighborhood of x say Nx such that Nx ∩ Fj 6= ∅ for onlY finitely many j values.
Prove

⋃∞
j=1 Fj is closed.

Proof. We will show the complement with respect to the entire space is open. That is, we show

X\
∞⋃
j=1

Fj

Let x0 ∈ X\
⋃∞
j=1 Fj be arbitrary. We must find a neighborhood of x that is disjoint from

⋃∞
j=1 Fj .

As x0 ∈ X we are guaranteed the existence of neighborhood Nx0
such that

Nx0
∩ Fj 6= ∅

for finitely many j values. That is, there exists a finite set J such that

Nx0

⋂
j∈J

Fj 6= ∅.

Then I claim the open neighborhood of x0 that is disjoint from
⋃∞
j=1 Fj is given by the intersection

Nx0

⋂
j∈J

X\Fj .

Clearly we have that x0 ∈ Nx0

⋂
j∈J X\Fj and is clearly disjoint from

⋃∞
j=1 Fj . Moreover, as τX is

closed under finite intersecions we have that Nx0

⋂
j∈J X\Fj ∈ τX as needed for our neighborhood

of x0 and so X\
⋃∞
j=1 Fj is open thus

⋃∞
j=1 Fj is closed.
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15 (Incomplete)

Let (X, τ) be a topological space and let C be the collection of closed sets. A filter on C is a collection
F of sets from C such that (1) ∅ /∈ F , (2) If C1, C2 ∈ F , then C1 ∩ C2 ∈ F , (3) If C1 ⊂ C2 with
C1 ∈ F and C2 ∈ C, then C2 ∈ F . Show that if each filter on C has non-empty intersection, then
(X, τ) is compact.

Proof. Let {Uα}α∈A be an arbitrary open cover for X. That is,

X ⊆
⋃
α∈A

Uα,

where Uα ∈ τ for each α. Then by definition we have for each α ∈ A that X\Uα ∈ C. Let
B = {B ∈ τ | B ⊆

⋃
i∈I Uαi} for some finite I ⊂ A. Then X\B ∈ C for each B ∈ B. I claim that

Fβ = {X\B | B ∈ B}

defines a filter on C. For (1), let us suppose ∅ ∈ Fβ , then ∅ = X\B for some B ∈ B which implies
B = X and since B ∈ B, we have that X ⊆

⋃
i∈I Uαi .
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16. Connected Lemma

Let (X, τ) be a a topological space and Y ⊂ X a connected subspace endowed with the subspace
topology. If A ∪B forms a separation of X, then Y ⊂ A or Y ⊂ B.

Proof. As A ∪B forms a separation, we have that

X = A ∪B

where A,B ∈ τ are both non-empty and disjoint as a pair. Let us suppose towards a contradiction
that there exists a, b ∈ Y such that a ∈ A and b ∈ B. I claim then that

Y ∩X = Y ∩ (A ∪B)

= (Y ∩A) ∪ (Y ∩B)

forms a separation of Y . Since Y is endowed with the subspace topology and A,B ∈ τ we have
that Y ∩ A, Y ∩ B ∈ τY . That is, they are both open in Y . If they were not disjoint then there
would exists some α such that

α ∈ (Y ∩A) ∩ (Y ∩B)

contradicting A,B being disjoint as a pair and thus Y ∩ A, Y ∩ B are disjoint as well. Lastly we
know by existence of a, b that they are non-empty thus together they form a separation of Y which
is connected a contradiction thus Y must lie entirely within A or B.
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17. Arbitrary collection of topologies on a set

(a) Let X be set and {τα}α∈A be a collection of topologies on X. Prove
⋂
α∈A τα is a topology on

X.

Proof. Suppose for each α ∈ A we have that (X, τα) is a topological space, we must show (X,
⋂
α∈A τα)

is also a topological space. First we check ∅, X ∈
⋂
α∈A τα. Since for each α ∈ A, τα is a topology

on X, we have for every α ∈ A that ∅, X ∈ τα and thus

∅, X ∈
⋂
α∈A

τα

as needed. Next suppose that

U1, U2, ..., Un ∈
⋂
α∈A

τα.

Then for every α ∈ A we have
U1, U2, ..., Un ∈ τα.

As for each α ∈ A, τα is a topology on X, by the closure property we get

n⋂
i=1

Ui ∈
⋂
α∈A

τα.

Lastly we must check arbitrary unions are closed. That is if for every β ∈ B some indexing set let
us suppose

Uβ ∈
⋂
α∈A

τα.

Then for every α ∈ A
Uβ ∈ τα

which are each a topology as noted before thus by closure property of arbitrary unions we get (for
every α ∈ A, that is.) ⋃

β∈B

Uβ ∈ τα,

which gives us ⋃
β∈B

Uβ ∈
⋂
α∈A

τα,

as needed making (X,
⋂
α∈A τα) a topological space.

(b) Given an example to show
⋃
α∈A τα is not necessarily a topology given τα is a topology for each

α ∈ A.

Proof. Let our set X be given as the following three point set

X = {a, b, c}.

Consider the following two topologies on X,

τ1 = {∅, X, {a}}, τ2 = {∅, X, {b}}.
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Then their union is given by
τ1 ∪ τ2 = {∅, X, {a}, {b}}

Which is not closed under even finite unions as

{a} ∪ {b} /∈ τ1 ∪ τ2

Thus unions of topologies need not be a topology.
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18. Intervals in R are connected

Prove intervals in R are connected.

Proof. Let I ⊂ R be an interval. To show I is connected, we assume towards a contradiction that
I is disconnected. That is, there is a separation of the interval

I = A ∪B

Where A,B ∈ τI (the topology on I when given the subspace topology inherited from Rstandard),
non-empty and disjoint. Thus we are guaranteed existence of a ∈ A and b ∈ B such that

a /∈ B, b /∈ A.

let I0 = [a, b]. Note that I0 ⊆ I. Then we can define

A0 = A ∩ I0, B0 = B ∩ I0.

Then A0 ∪ B0 forms a separtion of I0. To see this we already know they are non-empty by the
existence of a, b. If they were not disjoint then there exists some α ∈ A∩ I0 ∩B contradicting A,B
being disjoint as they form a separation of I. Lastly since A,B ∈ τI we have that (in the subspace
topology) A ∩ I0, B ∩ I0 ∈ τI0 . Are both open. Note that A0 ⊂ R is non-empty thus in inherits the
least upper bound porperty so we can define

c := sup(A0).

However A0 is closed because B0 is open thus c ∈ A0. and so c /∈ B0. As c is the supremum of A0,
for any x ∈ I0 with c < x we have that x /∈ A0 thus we get

(x, b] ⊂ B0.

But then c (Keep in mind that c ∈ I0) becomes a limit point of B0 forcing c ∈ B0 and since A0∪B0

form a separtion of I0, c /∈ A0 contradicting

c ∈ I0 = A0 ∪B0.

thus I is connected as there is no separation.
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19. Subspace of separable is separable

If X is a separable metric space, then so is any subspace Y .

Proof. Let (X, τ) be a topological space. Assume that X is separable, then we show for any subspace
Y ⊆ X that Y is separable. If Y = X or ∅ we are done so we suppose ∅ 6= Y ( X. We must
construct a countable dense subset for Y . Let A ⊂ X be a countable dense subset. Then we can
write

A = {a1, a2, ...}
such that

A = X.

That is, for every x ∈ X and Ux ∈ τ containing x we have

Ux \ {x} ∩A 6= ∅.

If we take y ∈ Y , then for any given ε > 0 we have that

Bε(y) ∩A 6= ∅.

As the intersection is non-empty let xk ∈ Bε(y) ∩A. I.e.,

xk ∈ {Bε(y) ∩A : ε ∈ R+}.

Thus
Bε(xk) ∩ Y 6= ∅.

Then we can take
B = {(k, ε) : Bε(xk) ∩ Y 6= ∅},

which is non-empty. So for each (k, ε) take yk,ε ∈ Bε(xk) ∩ Y 6= ∅ and let

Z = {yk,ε : (k, ε) ∈ B}.

And so we have that Z ⊂ Y is countable since the elements are pulled from elements who are in A
which is countable. We must show Z is dense in Y . That is, we must show

Z = Y.

Let y ∈ Y and r > 0 and choose ε such that

ε ≤ r

2
.

Then we can always find a k ∈ N such that

xk ∈ Bε(y).

Then (k, ε) ∈ B and by the triangle inequality,

d(y, yk,ε) ≤ d(y, xk) + d(xk, yk,ε)

< ε+ ε

= 2ε

≤ r.

Thus yk,ε ∈ Br(y) and thus y ∈ Z making Z dense in Y so Y is separable.
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20. Hausdorff Diagonal

Let (X, τ) be a topological space. Then X is Hausdorff if and only if ∆ = {(x, x) : x ∈ X} is closed
in X ×X.

Proof. First let us assume that ∆ is closed in X × X. We wish to show X is Hausdorff so let
x, y ∈ X be arbitrary. As ∆ ⊂ X × X is closed, by definition we know that ∆c ∈ τ. Then there
exists a basis element of the form

U × V ;U, V ∈ τ,

such that
(x, y) ∈ U × V ⊂ ∆c.

And so we have that
(U × V ) ∩∆ = ∅

which gives us x ∈ U, y ∈ V. Lastly, I claim that

U ∩ V = ∅.

If not, then there exists some z ∈ U ∩ V forcing

(z, z) ∈ U × V.

Moreover, (z, z) ∈ ∆ by definition, contradicting disjointess of U ×V and ∆ and so X is Hausdorff.
On the other hand, let us assume that X is Hausdorff and we wish to show that ∆ ⊂ X × X is
closed. We show this by showing ∆c is open. Let x, y ∈ ∆c. As X is Hausdorff we are guaranteed
the existence of Ux, Uy ∈ τ such that

Ux ∩ Uy = ∅.

I claim that
(Ux × Uy) ∩∆.

Let (a, b) ∈ (Ux×Uy)∩∆ then a = b ∈ Ux∩Uy a contradiction and thus ∆c ∈ τ and so ∆ ⊂ X×X
is closed.
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21. Equivalence of continuity in metric space

A function f is continuous using open sets if and only if it is continuous in the ε − δ sense. Let
τX , τY denote topologies in X and Y respectively.

Proof. Let X,Y be metric spaces and
f : X → Y

a map between them. First we will assume f is open set continuous. That is, if V ∈ τY then
f−1(V ) ∈ τX . Let x0 ∈ X and ε > 0 be given. Then f(x0) ∈ Y and we have that

(f(x0)− ε, f(x0) + ε) ∈ τY .

Then since f is continuous we get

x0 ∈ f−1((f(x0)− ε, f(x0) + ε)) ∈ τX .

So we can find a basis element containing x0 fully contained in f−1((f(x0) − ε, f(x0) + ε)). I.e.,
there exists δ > 0 such that

(x0 − δ, x0 + δ) ⊂ f−1((f(x0)− ε, f(x0) + ε)).

But then we have
f((x0 − δ, x0 + δ)) ⊂ (f(x0)− ε, f(x0) + ε).

Thus for any ε > 0 we can always find a δ > 0 such that if

|x− x0| < δ

then
|f(x)− f(x0)| < ε

making f continuous in the ε− δ senses.

On the other hand suppose that f is continuous in the ε− δ sense and let

f : X → Y

be our map. Let V ∈ τY . We wish to show f−1(V ) ∈ τX . Let x0 ∈ f−1(V ), then f(x0) ∈ V ∈ τY
and so there exists an ε > 0 such that

f(x0)− ε, f(x0) + ε) ⊂ V.

And since f is continuous in ε− δ sense are guaranteed the existence of some δ > 0 such that

(x0 − δ, x0 + δ) ⊂ f−1(V ).

This δ ball is the neighborhood of x0 properly contained in f−1(V ) thus f−1(V ) ∈ τX as needed.
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22. Continuous function over compact space

(a) Show continuous over compact attain a max.

Proof. Let f : X → R be continuous. Suppose that X is compact. Since compactness is a
topological property, f(X) is compact in R. By Heine-Borel, subsets of R under the standard
topology are compact if and only if they are both closed and bounded. Thus f(X) ⊂ R is closed
and bounded. Since f(X) is bounded there exists some M ∈ R such that for every x ∈ X we have
that

|f(x)| ≤M.

This tells us the supremum not only exists but is finite thus we can define

a := sup
x∈X

f(x)

Making a a limit point of f(X) which is closed in Y forcing a ∈ f(X) then by definition we have
that

f(x) ≤ a
for every f(x) ∈ f(X). Hence f(X) attains its max.

(b) Show continuous over compact is uniform.

Proof. Let
f : X → Y

be a map between metric spaces. If f is continuous and X is compact, prove that f is uniformly
continuous. I.e., δ is not dependant on each point. Since f is continuous, for each x ∈ X and any
given ε > 0, there is a δx such that if

dX(x, y) < δx,

then
dY (f(x), f(y)) < ε.

In other words
f(Bδx(x)) ⊂ B ε

2
(f(x)). (∗)

We now have that {B δx
2

(x)}x∈X is an open cover for X. As X is compact, we can find a finite

subset A ⊂ X such that
X ⊆

⋃
x∈A

B δ
2
(x).

Then we can take our δ to be

δ = min
x∈A

(
δx
2

)

Then we have that dX(x, y) < δ, then since x ∈ B δ
2
(x) we have that y ∈ Bδx(x) (keep in mind

x ∈ A). Lastly, if dX(x, y) < δ I claim dY (f(x), f(y)) < ε. Applying (∗) we get that

dY (f(x), f(y)) ≤ dY (f(x), f(z)) + dY (f(z), f(y))

<
ε

2
+
ε

2
= ε,

as needed.
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Alternate proof:

Proof. Let
f : X → Y

be a map between metric spaces. If f is continuous and X is compact, then we show f is uniformly
continuous. We say f is continuous in the ε− δ at x ∈ X if for any ε > 0 we can find a δ > 0 such
that if

dX(x, y) < δ,

then
dY (f(x), f(y)) < ε.

I claim that if f is ε
2 − δ continuous, then f is ε − δ

2 continuous. To see this, note that for every
x′ ∈ B δ

2
(x) and y ∈ B δ

2
(x′) we have that x′, y ∈ Bδ(x). Thus we can compute

dY (f(x′), f(y)) ≤ dY (f(x′), f(x)) + dY (f(x), f(y))

<
ε

2
+
ε

2
= ε

And we have proven the claim. Let ε > 0 and x ∈ X. By ε − δ continuity, there is some n ∈ N
such that f is ε

2 −
1
n continuous. Then by the claim, f is ε − 1

2n continuous. Moreover, as X is
compact, it can be covered by a finite number of these balls so let n0 be the max n value in the
finite collection, then f is ε− 1

2n0
continuous on every neighborhood of X and thus on all of X.
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23. Countable product of separable

Prove the countable product of separable is separable.

Proof. Let {Xn}n ∈ N be a collection of separable metric spaces. LetDn be the associated countable
dense subset and fix xn ∈ Dn. Then for each m ∈ N, we can define

Em = {y ∈ Dn : yn = xn;∀n ≥ m}
= Π1≤n<mDk ×Πn≥m{xn}.

Which is clearly countable and thus
⋃
mEm is countable as well. I claim that

⋃
mEm is dense in

ΠnXn. Note by the definition of product topology we can find a basis element of the form

B = Π1≤n<mVn ×Πn≥mXn.

Where Vn ⊂ Xn open. This is since for all but finitely many, the open sets are the whole space, in
the product topology and thus

B ∩
⋃
m

Em 6= ∅

forcing
⋃
mEm to be dense in ΠnXn as needed.

<back2top>

34



24. Closed intervals are compact

Prove for a < b ∈ R that [a, b] is compact.

Proof. Let [a, b] for a < b real numbers be an interval. We would like to show it is compact. Let
{Uα}α∈A be an arbitrary open cover for [a, b] (A some arbitrary indexing set). That is,

[a, b] ⊆
⋃
α∈A

Uα

Let
F := {x ∈ [a, b] | ∃B ⊂ A,finite 3 [a, x] ⊆

⋃
α∈B

Uα}.

Note that F 6= ∅. This is because a ∈ F as the empty set is compact. We have that F is a
non-empty subset of R thus it inherits the least-upper-bound property. So we define

c := supF ∈ [a, b].

I claim that c = b. We know c > a because for ε > 0 we there is a neighborhood Ui such that

[a, a+ ε] ⊂ Ui

Thus x ≥ a+ ε and we know
a < c < b.

Now take β ∈ A such that c ∈ Uβ and choose ε > 0 such that

a ≤ c− ε < c < c+ ε ≤ b

and
[c− ε, c+ ε] ⊂ Uβ

Since c− ε is not an upper bound of F there is some c0 with

c− ε ≤ c0 ≤ c

such that c0 ∈ F. which means [a, c0] has a finite sub-cover from our original cover. I.e.,

[a, c0] ⊂
⋃
α∈B

Uα

which implies

[a, c+ ε] ⊂
⋃
α∈B

Uα ∪ Uβ

Forcing c+ε ∈ F contradicting the fact that c is the upper bound as c < c+ε. Thus c = supF = b.
Lastly, we show b ∈ F . To see this, note for any ε > 0 we know that there exists some γ ∈ A such
that

[b− ε, b] ⊂ Uγ .
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This gives us the existence of some c0 ∈ [b− ε, b] such that c0 ∈ F . Then we can write

[a, b] = [a, c0] ∪ [b− ε, b]
⊆

⋃
α∈B

Uα ∪ Uγ .

Thus b ∈ F and we have found a finite sub-cover for [a, b] as needed.
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Counters

1. Any space with the indiscrete topology is connected. With the discrete topology everything is
disconnected.

2. Rl is not connected. Take A = (−∞, 0), B = [0,∞) as separtion components.

3. RK is connected hausdorff, but not path connected, not compact, not regulars

4. [0, 1] is no longer compact in the K-topology, K is an infinite subspace in closed unit with
no limit point in [0, 1].

5. In discrete topology, Q = Q

6. (0, 1) in Rl is [0, 1).

7. To show
⋃
Ai is not always contained in

⋃
iAi Consider A = {ri} is an enumeration of the

rationals, then ⋃
Ai =

⋃
{ri}

= Q
= R
*

⋃
Ai

=
⋃
{ri}

= Q.

as needed.

8. To show int(A) is not always contained in int(A) consider A = [0, 1).

9. To show int(A) is not always contained in int(A) consider A = Q.

10. indiscrete everything connected, in the discrete not.

11. To show A \B is not contained in A \B take R and Q.

12. R with cofinite topology is compact but not Hausdorff.

13. Note that the boundary of subset of a top space, A \ int(A) does not contain all limit points of
A. Take A = [0, 1] Then the boundary is {0, 1} but the set of limit points of A is all of A.

14. int(A) does not contain all limit points of A take A = Q.
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