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1. Nested closed subsets of compact

Let (X, 7) be a topological space. Let E; D Es D ... be closed subsets of X. If X is compact, prove
that mieIEi = (Z)

Proof. Let us assume toward a contradiction that

Since for each n € N we know E,, is closed in X and they are decreasing, we know the X \ E,, are
increasing. Then we have that for each n,

XC|JX\E,.
neN
By compactness of X we have the existence of a finite subet A C N such that
U x\E.

neA
= X \ EI\/I7

X

N

Where M € A is the maximal element in terms of set containment. But this implies
E, =
For every n such that 1 <n < M, contradicting non-emptiness. O



2 Compactness

(a) Closed subspaces of compact topological spaces need be compact.

Proof. Let X be a compact topological space. Suppose Y C X is closed. We would like to show
that Y is compact. Let {U, }aca be an open cover of Y. That is,

Y C U U,.
aEA

As Y C X is closed, its complement in X, X\Y, is open in X. Moreover, the union of the U,
together with X\Y forms an open cover for X, i.e.,

X C U Uy UX\Y.
acA

Since X is compact, we know there exists a finite subset B C A such that

X c |JUs, ux\Y

i€B
And since Y C X we have that
Y C U,
i€B
thus we have found a finite subcover of {U,} that cover Y and so Y is compact as needed. O

<back2top>

(b) Compact subspaces of Hausdorff topological spaces need be closed.

Proof. Let X be a Hausdorff topological space. Suppose Y C X is compact. We wish to show Y is
closed in X. Tt suffices to show its complement X\Y is open in X. Let z € X\Y, as X is Hausdorff,
for each y € Y there exists open sets U, C X\Y, V, CY with « € U,,y € V,, such that

U, NV, =0.

Since V,, CY is open, {V, | y € Y} is an open cover for Y, that is,

yc v

yey

By compactness of Y there exists a finite subset A C Y such that

vclyw=v
yeA
Then the finite intersection U = ﬂye 4 Uy is an open neighborhood of x disjoint from V', namely
zeUCX\Y
and thus X\Y is open in X forcing Y C X to be closed as needed. 0



< back2top>

(¢) The image of a compact topological space need be compact under a continuous map.

Proof. Let f : X — Y be a continuous map between topological spaces. Suppose X is compact.
We would like to show that f(X) C Y is compact. Let {Va}aeca be an arbitrary open cover for
f(X). That is,

fxycyva

a€cA

where V,, CY is open for each a € A. As f is continuous, we have that
Ve € X

is open for each o € A as well. Then {f‘l(Va)}aeA is an open cover for X and since X is compact
we have the existence of a finite subset B C A such that

xclJrrw
beB
then it follows that
fxcyw
beB
thus f(X) is compact. O

<back2top>



3. Regular space equivalence

(a) Define a regular space.

Proof. A topological space X is called regular or T3 if Yz € X and any closed subset F© C X not
containing x, 3 U,V C X open withx € U, F CV >

Uunv =40.
Namely, we can separate points from closed sets using open sets. O

Assume X is Hausdorff. Then X is regular if and only if for every z € X with neighborhood
U C X there exists V C X open with z € V such that V C U.

Proof. Let X be a Hausdorff topological space. Suppose first that X is also regular. Let x € X
and let U, C X be an open neighborhood of . Then F = X\U, is closed by definition. Since X
is a regular space we can separate x and F with open subsets of X, that is, there exists VW C X
open with x € V, FF C W such that

Vnw =0.

As z € U, we have that
VNF =0

forcing V C U, as needed.

Next suppose for each z € X and open neighborhood of x say U, C X there exists an open
neighborhood V' C X with = € V such that V CU,. Let x € X\F where FF C X is closed. We
wish to separate these via open subsets of X. As F' is closed it follows that X\F C X is open.
Then by our assumption we are guaranteed the existence of an open set V' C X such that

V C X\F.
Here z € V is an open neighborhood of z and similarly X\V is an open set containing F' such that
VNX\V=10
thus X is regular as needed. O



4. Non-disjoint union of connected is connected

(a) Let {X4}aer be a collection of topological spaces. If for each « € I X, is connected and

m XCK 7& ®7
acl
then we have that
U Xa
acl
is connected as well.
Note that this fails if we swap the conclusions union with intersection, take X, = S', X, :=

{(z,y) : x =y € R}, so the circle and the line, their union is connected, their intersection is two
disjoint points however.

Proof. First, Recall the Connected lemma:

Let (X, 7) be a topological space. If AU B is a separation of the space and Y C X is a
connected subspace, then Y lies entirely in A or B.

The proof of this is in Exercise 16. Now assume towards a contradiction that |, is disconnected.
That is, there is a separation. l.e.,

JXoa=4UB

aecl
Where A, B € 7 are non-empty and disjoint. Since the intersection of the X, is non-empty, let
z € (Naes Xa, then z € A or in B, let us say € A. But then B is non-empty thus there exists
some y € B But then y € X3 for some 3 € I and also z € X3 contradicting the connected lemma
as Xg is connected it must lie entirely in A or B and so |J,,.; X« is connected. O

<back2top>

acl

(b) The image of a connected space under continuous function need be connected.

Proof. Let f: X — Y be a continuous map of topological space. Suppose that X is connected. We
wish to show that f(X) is connected as well. Let us suppose towards a contradiction that f(X)
has a separation, that is,

f(X)=AUB

where A, B C f(X) are both nonempty and open. Since f is continuous, f~1(A), f~1(B) C X are
both open. Moreover, their union is all of X and thus we have formed a separation of X which is
connected, a contradiction and so f(X) is connected. O

<back2top>

(c) Let X,Y be connected. Show X X Y is connected in the product topology.



Proof. Suppose X,Y are connected topological spaces. We wish to show that with respect to the
product topology, X x Y is connected as well. Fix (zg,y0) € X x Y. As X is connected and
homeomorphic to the slice X x {yo}, it follows that X x {yo} is connected. Similarly, for each
x € X we have that the slice {x} x Y is connected as well. We can now define

Ty = (X x {yo}) U ({z} x Y)

Then (J, ¢y T% is connected by part (a) as the intersection consists of (z,40). As (J,cx 1% is all of
X xY, we are done. O



5. Equivalence for closed in metric space

Let (X, d be a metric space with C' C X and some p € X a point. Prove C is closed if and only if
C N Bgr(p) is closed for any R > 0 where

Br(p) = {z € X|d(x,p) < R}.

Proof. First suppose C is closed. Since arbitrary intersections of closed spaces need be closed we
have that the intersection

cn BR(p)

is closed as B,.(p) is closed by definition.
On the other hand suppose that for some p € X and any R > 0 the intersection

C n BR(p>

is closed. We wish to show that C' is closed, i.e., C = C. Clearly we have that C C C thus we are
left to show that C C C. So let z € C be a limit point. We must show x € C. As X is a metric
space we can put x in an epsilon ball, that is,

z € Be(z) :={y € X | d(z,y) < e}

As C'N Bg(p) is closed for any R, we can take R = d(z,p) + . Then we have that

B.(x) C Br(p) C Br(p)-

As x is a limit point of C, B.(x)\{x} intersects C non-trivially thus x is a limit point of C'N Br(p)
hence x € C'N Br(p) forcing 2 € C as needed and C' is closed.

<back2top>
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6. Hausdorff & second-countable

(a) Define second-countable
Proof. A topological space X is said to be second-countable if it has a countable basis. O
(b) Define Hausdorff.

Proof. A topological space X is said to be Hausdorff if for any pair of distinct elements z,y € X
we can find open subsets of X say U,V with x € U,y € V such that

Uunv =0.

(¢c) Prove or disprove: Every metric space equipped with the metric topology is Hausdorft.

Proof. Let (X,d) be a metric space. Then d induces a topology on X, namely the collection of
epsilon balls, that is,
{B:(z) |z € X,e > 0}.

This collection forms a basis for a topology on X. I claim X is Hausdorff. Let xz,y € X be
distinct. Then we have that d(z,y) > 0 so denote this distance by £9. Then we have basis elements
T € Beo(y),y € Beog,). It suffices to show

Bep(yy N By =0

Suppose there exists some z € Bz () U Beo () then d(,2),d(z,y) < . And so by the triangle
inequality we have

€0 = d(l’, y)
< d(z,z)+d(z,y)
€0 €0
< —_ i
5 +
= 6‘0
a contradiction forcing the intersection to be empty as needed thus (X, d) is Hausdorff. O

(d) Prove or disprove: Every metric space equipped with the metric topology is second-countable.

Proof. Consider R as a metric space equipped with discrete metric, that is

dwyp)= { o o277

Here the basis elements consist of singleton sets. R has an uncountable number of points, the basis
(the singletons) is uncountable thus not second-countable. O

<back2top>
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7. The product topology

Consider the Product space Y = I12° [0, 1] with the product topology.

(a) Prove Y is Hausdorff.

Proof. As [0,1] is Hausdorff (It is a subspace of the reals which are Hausdorff and it is easy to check
subspaces of Hausdorfl under subspace topology need be Hausdorff as well) we verify that given
a collection {(X;,7;)}ier of topological spaces, if they are all assumed to be Hausdorff, then their
product

(Mier X, 7x)

(for short we denote IT;c; X; by X) is Hausdorff when 7x is the product topology. Before proceeding,
small lemma:

Lemma If A, B,C are sets such that BN C = (), then A x BN A x C = as well and
this extends to uncountably infinite case as well.

Now let x,y € X be distinct. Then there exists (at least one) some j € I our indexing set such
that the components do not agree here, that is, for z;,y; € X; we have

Tj # Y-
As X; is Hausdorff, then there exists U;, V; € 7; with z; € U;,y; € V; such that
Uunv; =9.
Then by the definition of the product topology, for each i € I\ {j} we can take
U=V, =X,
And then define the neighborhoods of z,y as
U =1LierU;, V = ILie Vi
and since the U;, V; are disjoint at j together with our lemma we have that
unv=90
with € U,y € V thus (X, 7x) is Hausdorff as needed. O
(b) Prove Y = II,,en]0, 1],, is separable.

Proof. To show Y is separable, we construct a countable subset that is dense in Y. Consider the
following subset of Y,

A:={(a1,a2,..)€Y|AN eN>3a; € QNJ[0,1],1 <i < N}

Le., all sequences with finitely many rational coordinates. I claim A is dense in Y, to see this we
show every open set of Y intersects A nontrivially. Let x € U € 1y. If x € A then we are done as

12



x € UNA. Suppose z € Y \ A. As we are in the product topology, our basis elements are of the
form

n>°,U, cU

Where U,, = [0,1] for all but finitely many n. And for those finitely many n we have the proper
containment U,, C [0,1]. If we let = (x1,29,...), then for finitely many values, call them i, we
have

x; €U; C [0, 1]

As Q is dense in R, we have for these finite many ¢, there exists some rational ¢; € Q such that
7 €U
Then consider the point y = (y1,ya,...) such that
Yi = Qi1 SNy Yp = Tp; VN >0
Then y € A and since U was arbitrary we have that A is dense in Y. O

13



8. Continuity When restricted

(a) Let (X, 7x) be a topological space. If we can write X =] _ W, where for each n € N

neN
f1L. Wy =Y

is continuous, then

f:X—=Y
is continuous.
Proof. Let

f: X—=Y
be a map of topological spaces with topologies 7x, 7y respectively. Let V' € 1y. Note that

FIT V) = V) nwy
€ Tx.

As f [, is continuous for every n. But then we can write

Urtvnw;
kEN
c Tx
as any union of open need be open thus f is continuous. O

(b) Let (X, 7x) be a topological space. If X = AU B where A, B are closed and f [4: A=Y, f |5
B — Y are continuous. Prove
f: X->Y

is continuous.

Proof. Let V C Y be closed, then just as before, since A is a subset of X, then for all subsets of Y’
which V' is, we have

V)N A=(fla~H(V)

Holds for when z € A and f(z) € V. As V C Y is closed and the restrictions are continuous, we
have that

(fla~(V)n4
(fle)'(V)nB

Are both closed in A, B respectively thus both are closed in X as well and we have

V) =171 v)n
1(V) (A UB)
(f 'V)nA)u(f~H(V)nB)
Which is a finite union of closed thus f~(V) C X is closed as needed thus f is continuous. O

14



(c) Assume X = J;= | E; where the Ej, are all closed in X such that each Ej — Y is continuous,
is X — Y also continuous?

Proof. False. Consider the map
f:Z—R

where Z is endowed wuith cofinite topology and R has the standard topology. Let

z=J{n}

neZ

So our Ej, are just singletons of integers, then f|g, is continuous for each k.
To see this, take C' C R closed, then we have

flEl©) =) nE

which is either just a singleton or the empty set both of which are closed in Z with cofinite topology.

On the other hand, f is not continuous as any open set (a,b) C R has a pull back with infinite
complement thus not open in Z with cofinite topology. O

15



9. Product Topology

(a) Define the product topology on the product X = 1132, X;;.
Proof. The product topology on X is the product

H]Q.;IUJ
Where U; C X; are open and

U; =X;
V but finitely many j, for finite j,

Uj & X,

proper subset. More formally, if 73 is projection onto the Sth coordinate, then

Sp = {W[;l(UB)|U5 is open in X3}
Then the topology generated by | sed Sp is the product topology. O
(b) Show the projection map p; : X; x Xy — X, is an open map for i = 1, 2.

Proof. For each — = 1,2, let 7; denote the topology on X;. Let U € 7,, then by the definition of
the product topology we can write

n;
-1
U= U ﬂ pil«,jUk’j’
jET k=1
where J is an arbitrary indexing set, n; € N and iy ; = 1,2. Then for every ¢ = 1,2, define V; 1, ; € 7;
via
Ukj 1=1,;
Vikj = o
Xi  jiFik
By the definition of projection we have
Pit (Ukg) = Vigj X Voi .

And without any loss of generality we can suppose ¢ = 1 and compute

nU) = Upl(mp;k‘lj(Uk,j))
k=1

jeJ
n;
= Ur((Viks x Vo))
jeJ k=1
nj 4
= Uni(() Vaks x [ Vo)
jeJ k=1 k=1
n;
= UMWk
jeJ k=1
[SEE]
and thus p; is an open map. The same proof works for ps. O

16



(¢) T Y is Hausdorff and
f:X—=Y
is continuous, prove the graph
A ={(z, f(x))|lx € X}
is closed in X x Y.

Proof. We show A€ is open instead.
Let (z,y) € X x Y\A, then y # f(x).
As y, f(x) € Y which is Hausdorff they can be separated via open sets of Y.

That is, U,V C Y open with y € U, f(x) € V s.t.
unv=>0

By Munkres Theorem 18.1(4) since f is continuous, 3 W C X with x € W s.t.
fwycv

Then W x U is an open neighborhood of (z,y) disjoint from A thus X x Y\A = A€ is open, and

therefore A is closed.
(d) If Y is Hausdorff and
f: X =Y

is continuous, prove

G: X —>XxY
defined via

G(z) = (z, f(2))
is a closed map.
Proof. Let C C X be closed, we wish to show

G(C)C X xY
is closed. Let (z,y) € X x Y\G(C), then y # f(x) which are both in Y.

Since Y is Hausdorff, 3U,V CY both open with y € U, f(z) € V such that
unv=90
As f is continuous however, 3W C X an open neighborhood of x such that

fwycv

O

Then W x U is an open neighborhood of (z,y) disjoint from G(C'), thus G(C)¢ is open forcing G(C')

to be closed .". G is a closed map.

17
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10. Homeomorphisms

(a) Prove (0,1) with the subspace topology is homeomorphic to R with the standard topology.

Proof. Let
T
1 (0,1 -, =
Fr0) = (5,0
be defined via -
flz) :=7mx — 5
and let
ISR
947900
be defined via
g(z) :==tanx
Then
h:(0,1) = R
defined via

hz) = g(f(x))

7r
= t -z
an(mx 2)

is the desired homeomorphism with inverse defined via

By calulus we are done. O

(b) Assume X,Y are metric spaces that are homeomorphic. Prove or give coumterexample: X
complete implies Y complete, that is, is completeness preserved under cont?

Proof. Part (a) O
(c) Prove [a,b) 2 (¢, d).

Proof. First a small lemma (proof left to the interested reader; HINT: First restrict the domain,
then restrict the range.)

Lemma: If
f: X->Y

is a continuous map of topological spaces, then for any x € X,
FX\{z} = Y\ {f(a)}

is continuous as well. Morveover, if f is a homeomorphism, then f is a homeomorphism
as well.

18



Now let us assume [a,b) = (¢,d). Then there exists a homeomorphism
g:la;b) = (¢,d).

By our lemma above
g:[a,0) \{a} = (c,d) \ {g(a)}
is a homeomorphism as well. Le.,

g:(a,0) = (¢, 9(a)) U (g(a), d)

is a homeomorphism. Note that the domain is still connected while the range space is clearly
disconnected and since connectedness is a topological property, this contradicts continuity of g and
thus [a, b) 2 (¢,d) as needed. One can check that the range space in fact has a separation. O

19



11. Topology of finite point-set
Let X = {1,2,3,4} be given by the topology 7 = {0, X, {1},{1,2},{1,3},{1,2,3}}
(a) Show any two disjoint closed sets have disjoint open neighborhoods

Proof. By definition, the closed sets in X are taken to be the complements of the given open sets,
that is,
C= {X7 Qv {27 37 4}7 {37 4}7 {27 4}7 {4}}

are all of the closed subspaces of X. As 4 is an element of every member of C except () and 0 is
disjoint with every non-empty set, the pairs of disjoint closed subspaces are

X, 0
{2,3,4},0
{3,4},0
{2,4},0
{4},0

where the neighborhood X contains each closed set except for ) and clearly () is its own neighborhood
which is disjoint from X as needed. O

(b) Show (X, 7) is not Ty
Proof. Consider the elements 1,2. The open neighborhoods of 2 are
{1,2},{1,2,3}.

Since both of these contain 1 we cannot find open sets for 1 and 2 that do not contain each other
thus (X, 7) is not Tj. O

(c) Let A =1{1,2,3} C X be endowed with the subspace topology. Find disjoint closed subsets of
A that do not have disjoint neighborhoods.

Proof. As A is endowed with the subspace topology we can write out the topology on A as follows
Ta = {0, A4, {1},{1,2}, {1, 3} }.
Then the closed subsets of A are given by
Ca={4,0,{2,3}, {3}, {2}}.
Then {2}, {3} are disjoint closed sets in A. The neighborhoods of {2} are

A, {1,2},
and the neighborhoods of {3} are

A, {1,3}.
And since {1,2} N {1,3} = {1} is non-empty, we have found disjoint closed subsets of A with non
disjoint neighborhoods. O

20



12. Closures connected/path

(a) If X C Z is a connected subset of a topological space, show that X C Z is connected as well.

Proof. Let X C Z be a connected subspace of a topological space. Suppose towards a contradiction
that X is not connected. Then there exists a separation of X, that is,

X =AUB,

A, B € 7% non-empty and disjoint. As X is connected, by the connected Lemma we have WLOG
that X = AN X. As B is non-empty, it contains some b, namely b is a limit point of X and thus B
is an open set containing a limit point of X thus it must intersect X C A non-trivially contradicting

ANB=10.

Thus X is connected. O
(b) Show (a) fails for path-connected subspaces.

Proof. Take the topologist’s sin curve. That is, the function
f:RT = [~1,1]

which is defined via 1
T sm(;).

Then {(z,y) | y =sin()} is path-connected, however the closure given via
.1
{(xvy) € R2 ‘ Y= Sln(;)} U {0} X [_17 1]

is not path-connected. O

<back2top>
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13. Cofinite Topology

Let 7 be the finite complement topology on R. That is, U C R is open if and only if U is empty or
R\U if finite.
(a) Is (R, 7) Hausdorff?

Proof. T claim (R, 7) is not Hausdorff. Let 2,y € R and U € 7 be a neighborhood of . Then R\U
is finite so we can write

R\U = {p1,...,pn}
Similarly we can let V' € 7 be a neighborhood of y and write

R\V = {qla teey QM}

We would like for U, V' to have a non-empty intersection. As R is infinite, we can find a z € R such
that z # p; for 1 < i <n and z # ¢; for 1 < j < m. This would imply z € UNV and so (R, 7) is
not Hausdorff. O

(b) Is (R, 7) compact?

Proof. 1 claim (R, 7) is compact. Let {U,}oca be an arbitrary open cover for R, that is

R C U U,.
acA

For each @ € A we know R\U,, is finite, in particular we can take some 8 € A and so R\Uyp is finite.
Then for each x € R\Ug let U, € T be the neighborhood containing . Then it follows that

RCUsU{U; | # € R\Ug}

is a finite sub-cover of our arbitrary covering thus (R, 7) is Hausdorff as needed. O

<back2top>
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14. Sequence of closed

Let Iy, Fy, ... be a sequence of closed subsets of a topological space X. Suppose that for each z € X
we can find a neighborhood of z say N, such that N, N F; # 0 for onlY finitely many j values.
Prove Ujil F} is closed.

Proof. We will show the complement with respect to the entire space is open. That is, we show
o0
x\UF
j=1

Let g € X\ U;L F}; be arbitrary. We must find a neighborhood of z that is disjoint from U;il F;.
As g € X we are guaranteed the existence of neighborhood N, such that

Ny NF; #0

for finitely many j values. That is, there exists a finite set J such that

Na, ﬂFj £ 0.

jeJ

Then I claim the open neighborhood of zy that is disjoint from U;’;l F} is given by the intersection

Nay () X\

jeJ

Clearly we have that zg € Ny, (;c; X\Fj and is clearly disjoint from U;il F};. Moreover, as Ty is
closed under finite intersecions we have that N, s X \F; € 7x as needed for our neighborhood
of g and so X\ |Jj, F} is open thus [J;Z, Fj is closed. O

<back2top>
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15 (Incomplete)

Let (X, ) be a topological space and let C be the collection of closed sets. A filter on C is a collection
F of sets from C such that (1) § ¢ F, (2) If C1,Cs € F, then C1 NCy € F, (3) If C; C Cy with
C1 € F and Cs € C, then Cy € F. Show that if each filter on C has non-empty intersection, then
(X, 1) is compact.

Proof. Let {Uy}aca be an arbitrary open cover for X. That is,

xc U,

acA

where U, € 7 for each a. Then by definition we have for each o« € A that X\U, € C. Let
B={Be7|BC Uy} for some finite I C A. Then X\B € C for each B € B. I claim that

Fs={X\B|BeB}

defines a filter on C. For (1), let us suppose () € Fg, then () = X\B for some B € B which implies
B = X and since B € B, we have that X C (J;; Ua,. O
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16. Connected Lemma

Let (X, 7) be a a topological space and Y C X a connected subspace endowed with the subspace
topology. If AU B forms a separation of X, then Y C Aor Y C B.

Proof. As AU B forms a separation, we have that
X=AUB

where A, B € 7 are both non-empty and disjoint as a pair. Let us suppose towards a contradiction
that there exists a,b € Y such that a € A and b € B. I claim then that

YNX = YnN(AUB)
= (YnAu{lnB)
forms a separation of Y. Since Y is endowed with the subspace topology and A, B € T we have

that Y N A, Y N B € 7y. That is, they are both open in Y. If they were not disjoint then there

would exists some « such that
ae(YNA)N(YNB)

contradicting A, B being disjoint as a pair and thus Y N A, Y N B are disjoint as well. Lastly we
know by existence of a, b that they are non-empty thus together they form a separation of Y which
is connected a contradiction thus Y must lie entirely within A or B. O
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17. Arbitrary collection of topologies on a set

(a) Let X be set and {74 }aeca be a collection of topologies on X. Prove [ .4 7o is a topology on
X.

Proof. Suppose for each v € A we have that (X, 7,) is a topological space, we must show (X, [ ¢ 4 Ta)
is also a topological space. First we check 0, X € (Naca Ta- Since for each a € A, 7, is a topology
on X, we have for every a € A that ), X € 7, and thus

0,X e ﬂ To
a€cA

as needed. Next suppose that
U,Us,...,U, € ﬂ To-

acA

Then for every a € A we have
Up,Us,....U, € 74.

As for each a € A, 7, is a topology on X, by the closure property we get
n
ﬂ U, € ﬂ Ta-
=1 acA

Lastly we must check arbitrary unions are closed. That is if for every 5 € B some indexing set let

us suppose
Usg € ﬂ Ta-
a€cA
Then for every a € A
U@ € Ta

which are each a topology as noted before thus by closure property of arbitrary unions we get (for
every o € A, that is.)

U Ulg € Ta,

BEB
which gives us
U Uﬁ S ﬂ Tas
BeB a€cA
as needed making (X,(),c 7a) a topological space. O

(b) Given an example to show J,c 4 7o is not necessarily a topology given 7, is a topology for each
a € A

Proof. Let our set X be given as the following three point set
X ={a,b,c}.
Consider the following two topologies on X,

71 ={0,X,{a}}, = = {0, X, {b}}.
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Then their union is given by

TIUTy = {@’Xa {a}7 {b}}

‘Which is not closed under even finite unions as

{a}U{b} ¢ 11 U
Thus unions of topologies need not be a topology.

<back2top>
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18. Intervals in R are connected

Prove intervals in R are connected.

Proof. Let I C R be an interval. To show [ is connected, we assume towards a contradiction that
I is disconnected. That is, there is a separation of the interval

I=AUB

Where A, B € 77 (the topology on I when given the subspace topology inherited from Rgtandard)s
non-empty and disjoint. Thus we are guaranteed existence of a € A and b € B such that

a¢ B,b¢ A
let Iy = [a,b]. Note that Iy C I. Then we can define
Ao = ANTIy, By = BN 1.

Then Ay U By forms a separtion of Iy. To see this we already know they are non-empty by the
existence of a, b. If they were not disjoint then there exists some o € AN Iy N B contradicting A, B
being disjoint as they form a separation of I. Lastly since A, B € 7; we have that (in the subspace
topology) AN Iy, BN Iy € 77,. Are both open. Note that Ag C R is non-empty thus in inherits the
least upper bound porperty so we can define

¢ :=sup(Ao).

However Ay is closed because By is open thus ¢ € Ag. and so ¢ ¢ By. As c is the supremum of Ay,
for any x € Iy with ¢ < z we have that x ¢ Ay thus we get

(JC, b} C Bp.

But then ¢ (Keep in mind that ¢ € Iy) becomes a limit point of By forcing ¢ € By and since Ay U By
form a separtion of Iy, ¢ ¢ Ag contradicting

ce ly=AgU Byg.

thus I is connected as there is no separation. O
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19. Subspace of separable is separable

If X is a separable metric space, then so is any subspace Y.

Proof. Let (X, ) be a topological space. Assume that X is separable, then we show for any subspace
Y C X that Y is separable. If Y = X or () we are done so we suppose ) # Y C X. We must
construct a countable dense subset for Y. Let A C X be a countable dense subset. Then we can
write

A= {0,1, as, }
such that
A=X.
That is, for every z € X and U, € 7 containing = we have
U \{z} NA#D.
If we take y € Y, then for any given € > 0 we have that
Be(y)NA#0.

As the intersection is non-empty let xp € B:(y) N A. Le.,
7 € {B(y)NA:e e R

Thus
BE(.’L'k) Ny # 0.

Then we can take
B ={(k,e): Be(xi) NY # 0},
which is non-empty. So for each (k,¢) take yi . € Be(zx) NY # 0 and let
Z = {yk,s : (k,€) € B}

And so we have that Z C Y is countable since the elements are pulled from elements who are in A
which is countable. We must show Z is dense in Y. That is, we must show

Z=Y.
Let y € Y and r > 0 and choose ¢ such that

™
IA
o3

Then we can always find a & € N such that
xg € Be(y).
Then (k,e) € B and by the triangle inequality,
Ay, yre) < d(y,ae) + d(@e, Yr,e)

< e+e¢
= 2
<
Thus yi . € B,(y) and thus y € Z making Z dense in Y so Y is separable. O
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20. Hausdorff Diagonal

Let (X, 7) be a topological space. Then X is Hausdorff if and only if A = {(z,z) : € X} is closed
in X x X.

Proof. First let us assume that A is closed in X x X. We wish to show X is Hausdorff so let
xz,y € X be arbitrary. As A C X x X is closed, by definition we know that A € 7. Then there
exists a basis element of the form

UxV UV er,

such that
(z,y) e U xV C A°.

And so we have that
UxV)NA=10

which gives us x € U,y € V. Lastly, I claim that
unv =49.
If not, then there exists some z € U NV forcing
(2,2) e U x V.

Moreover, (z,z) € A by definition, contradicting disjointess of U x V and A and so X is Hausdorff.
On the other hand, let us assume that X is Hausdorff and we wish to show that A C X x X is
closed. We show this by showing A€ is open. Let x,y € A°. As X is Hausdorff we are guaranteed
the existence of U, U, € 7 such that

U, NU, =
I claim that
(Uz x Uy) NA.
Let (a,b) € (U, x Uy)NA then a = b € U, NU, a contradiction and thus A® € 7 and so A C X x X
is closed. 0

< back2top>
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21. Equivalence of continuity in metric space

A function f is continuous using open sets if and only if it is continuous in the € — § sense. Let
Tx, Ty denote topologies in X and Y respectively.

Proof. Let X,Y be metric spaces and
f:X—=Y

a map between them. First we will assume f is open set continuous. That is, if V' € 7y then
f7H(V) € rx. Let 79 € X and € > 0 be given. Then f(z) € Y and we have that

(f(wo) — &, f(zo) +€) €Ty,
Then since f is continuous we get
zo € fH((f(x0) — ¢, fwo) +¢)) € 7x.

So we can find a basis element containing zo fully contained in f=1((f(zo) — ¢, f(zo) +€)). Le.,
there exists § > 0 such that

(w0 — 0,20 +8) C fH((f(wo) — &, f(wo) +¢))-

But then we have

f((zo — 6,20 +6)) C (f(x0) — &, f(20) + &)
Thus for any € > 0 we can always find a é > 0 such that if

|z —zo] < 0

then
|f(z) = fzo)| <e

making f continuous in the € — § senses.
On the other hand suppose that f is continuous in the ¢ — d sense and let
f: X—=Y

be our map. Let V € 7y. We wish to show f~}(V) € 7x. Let 2o € f~1(V), then f(x9) € V € 1y
and so there exists an € > 0 such that

f(zo) — e, f(zo) +&) C V.
And since f is continuous in € — ¢ sense are guaranteed the existence of some § > 0 such that
(zo — 6,20 +6) C FH(V).
This & ball is the neighborhood of x properly contained in f~(V) thus f~}(V) € 7x as needed. O
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22. Continuous function over compact space

(a) Show continuous over compact attain a max.

Proof. Let f : X — R be continuous. Suppose that X is compact. Since compactness is a
topological property, f(X) is compact in R. By Heine-Borel, subsets of R under the standard
topology are compact if and only if they are both closed and bounded. Thus f(X) C R is closed
and bounded. Since f(X) is bounded there exists some M € R such that for every z € X we have
that

(@) < M.

This tells us the supremum not only exists but is finite thus we can define

a = sup f(x)
reX

Making @ a limit point of f(X) which is closed in Y forcing a € f(X) then by definition we have
that

flz) <a
for every f(z) € f(X). Hence f(X) attains its max. O

(b) Show continuous over compact is uniform.

Proof. Let
f: X->Y
be a map between metric spaces. If f is continuous and X is compact, prove that f is uniformly
continuous. Le.; § is not dependant on each point. Since f is continuous, for each z € X and any
given € > 0, there is a J, such that if
dX (13, y) < 5x7
then
dy (f(x), f(y)) <e.
In other words
f(Bs,(x)) € Bs(f(z)). (%)
We now have that {Bs, (z)}sex is an open cover for X. As X is compact, we can find a finite
subset A C X such that

xc | Bs@).

T€EA :
Then we can take our § to be

0= min(%)

z€A
Then we have that dx(z,y) < 0, then since x € Bg(x) we have that y € Bs, () (keep in mind
x € A). Lastly, if dx(z,y) < d I claim dy (f(x), f(y)) < €. Applying (*) we get that
dy (f(x), f(y)) < dy(f(x), f(2)) +dv(f(2), f(y))
€
< o+

2
= 5’

—~ =

N ™

as needed. O
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Alternate proof:

Proof. Let
f:X—>Y

be a map between metric spaces. If f is continuous and X is compact, then we show f is uniformly
continuous. We say f is continuous in the € — § at & € X if for any € > 0 we can find a § > 0 such
that if

dX (.’L’, y) < 67
then
dy (f(z), f(y)) <e.
I claim that if f is § — ¢ continuous, then f is ¢ — % continuous. To see this, note that for every

FAS B;(z) and y € B; (2') we have that z’,y € Bs(x). Thus we can compute

IN
oY
>~<
—~
~
—
8
:_)
~
—
8
S~—
+
oY
>.<
—~
~
—~
&
=
<
~—
S~—"

dy (f(="), f(y))

<

And we have proven the claim. Let ¢ > 0 and x € X. By € — § continuity, there is some n € N

such that f is £ — 1 continuous. Then by the claim, f is € — 5 continuous. Moreover, as X is
compact, it can be covered by a finite number of these balls so let ng be the max n value in the

finite collection, then f is ¢ — i continuous on every neighborhood of X and thus on all of X. O
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23. Countable product of separable

Prove the countable product of separable is separable.

Proof. Let {X,,}n € N be a collection of separable metric spaces. Let D,, be the associated countable
dense subset and fix z,, € D,,. Then for each m € N, we can define

E, = {y€Dy:y,=1z,;Yn>m}

= H1§n<ka X Han{zn}'

Which is clearly countable and thus (J,, Ey, is countable as well. I claim that J,, By, is dense in
11, X,,. Note by the definition of product topology we can find a basis element of the form

B = H1§n<mVn X HanXn

Where V,, C X,, open. This is since for all but finitely many, the open sets are the whole space, in
the product topology and thus

BN JEn #0

forcing Um FE,, to be dense in II,, X, as needed. O
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24. Closed intervals are compact

Prove for a < b € R that [a, b] is compact.

Proof. Let [a,b] for a < b real numbers be an interval. We would like to show it is compact. Let
{Ua}aca be an arbitrary open cover for [a,b] (A some arbitrary indexing set). That is,

la,0] € | Ua
acA

Let
F:={z € [a,b] | 3B C A, finite 3 [a,2] C | ] Ua}.
aeB

Note that F' # (). This is because a € F as the empty set is compact. We have that F is a
non-empty subset of R thus it inherits the least-upper-bound property. So we define

c:=supF € [a,b].
I claim that ¢ = b. We know ¢ > a because for € > 0 we there is a neighborhood U; such that
[a,a+¢] C U;

Thus x > a + ¢ and we know
a<c<hb.

Now take 3 € A such that c € Ug and choose € > 0 such that
a<c—e<c<c+e<b

and
[c—e,c+ el C Up

Since ¢ — ¢ is not an upper bound of F' there is some ¢y with
c—e<cy<c

such that ¢y € F. which means [a, ¢g] has a finite sub-cover from our original cover. Le.,

[a,co] C U U,
a€EB
which implies
[a,c+¢e] C U U, UUg
aEB

Forcing c+¢ € F contradicting the fact that ¢ is the upper bound as ¢ < ¢+¢. Thus ¢ = sup F' = b.
Lastly, we show b € F'. To see this, note for any ¢ > 0 we know that there exists some v € A such
that

[b—e,b] CU,.
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This gives us the existence of some ¢g € [b — ¢,b] such that ¢y € F. Then we can write
[a,b] = [a,co]U[b—e,b]

c Y Uauu,.
aEB

N

Thus b € F and we have found a finite sub-cover for [a, b] as needed.

< back2top>
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Counters

1. Any space with the indiscrete topology is connected. With the discrete topology everything is
disconnected.

2. R; is not connected. Take A = (—00,0), B = [0, 00) as separtion components.
3. R is connected hausdorff, but not path connected, not compact, not regulars

4. [0,1] is no longer compact in the K-topology, K is an infinite subspace in closed unit with
no limit point in [0, 1].

5. In discrete topology, Q=0Q

6. (0,1) in R; is [0,1).

7. To show [JA; is not always contained in (J; A; Consider A = {r;} is an enumeration of the
rationals, then

U

Ut}
Q

R
U4
= Ut
- Q

_l

as needed.

8. To show int(A) is not always contained in int(A) consider A = [0, 1).

9. To show int(A) is not always contained in int(A) consider 4 = Q.
10. indiscrete everything connected, in the discrete not.
11. To show A\ B is not contained in A\ B take R and Q.

12. R with cofinite topology is compact but not Hausdorff.

13. Note that the boundary of subset of a top space, A\ int(A) does not contain all limit points of
A. Take A = [0,1] Then the boundary is {0,1} but the set of limit points of A is all of A.

14. int(A) does not contain all limit points of A take A = Q.
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