Point-Set Topology Select Solutions

MyMathYourMath.comSolutions by: Hossien Sahebjame

Spring 2021

Contents

- 1. Intersection
- 2. Compactness
 - (a) Closed subset of compact is compact
 - (b) Compact subset of Hausdorff is closed
 - (c) Continuity preserves compactness
- 3. Regular space Equivalence
- 4. Connectedness
 - (a) Non-disjoint union of connected is connected
 - (b) Continuity Preserves connectedness
 - (c) Product of connected under product topology is connected
- 5. Closed set equivalence
- 6. Metrizability and 2nd Countability.
 - (a) What is 2nd countable?
 - (b) What is Hausdorff?
 - (c) Metrizability imply Hausdorff or not?
 - (d) Metric topology imply 2nd countable?
- 7. Product topology
 - (a) Is it Hausdorff?
 - (b) Is it 2nd-countable?
- 8. Continuity when restricted
 - (a) Continuity from arbitrary union of opens
 - (b) Continuity from finite union of closed
 - (c) Continuity from arbitrary union of closed
- 9. More Product/Hausdorff
 - (a) Definition of Product Topology
 - (b) Projection map is open
 - (c) The closed graph
 - (d) The closed map
- 10. Homeomorphisms (incomplete)
 - (a) $\mathbb{R} \simeq (0,1)$

- (b) Completeness preserved under continuous function
- (c) Not homeo.
- 11. Topology of a 4 point set
 - (a) Show any two disjoint closed sets have disjoint open neighborhoods
 - (b) Show (X, τ) is not T_1 .
 - (c) Let $A = \{1, 2, 3\} \subset X$ be endowed with the subspace topology.
- 12. Connected and path connected closures.
 - (a) If X is connected, is \overline{X} connected as well?
 - (b) If X is path-connected, is \overline{X} path-connected as well?
- 13. The Cofinite Topology on \mathbb{R}
 - (a) Is the cofinite on \mathbb{R} Hausdorff?
 - (b) Is the cofinite on \mathbb{R} compact?
- 14. Union of sequence of closed subsets of a top space
- 15. The Filter problem
- 16. The Connected Lemma
- 17. Arbitrary union/intersection of collection of topologies
 - (a) Topology itself closed under arbitrary intersection.
 - (b) Topology itself not close under arbitrary unions
- 18. Intervals in \mathbb{R} are connected.
- 19. Subspaces of separable metric spaces are separable
- 20. Hausdorff Diagonal
- 21. Equivalence of continuity
 - (a) Cont over Comp attain Max.
 - (b) Cont over Comp is Uniform
- 22. Countable product of separable is separable.
- 23. Closed intervals in \mathbb{R} are compact.
- 24. Examples, counterexamples

1. Nested closed subsets of compact

Let (X, τ) be a topological space. Let $E_1 \supset E_2 \supset ...$ be closed subsets of X. If X is compact, prove that $\bigcap_{i \in I} E_i = \emptyset$.

Proof. Let us assume toward a contradiction that

$$\bigcap_{n \in N} E_i = \emptyset$$

Since for each $n \in \mathbb{N}$ we know E_n is closed in X and they are decreasing, we know the $X \setminus E_n$ are increasing. Then we have that for each n,

$$X\subseteq \bigcup_{n\in\mathbb{N}}X\setminus E_n.$$

By compactness of X we have the existence of a finite subst $A \subset \mathbb{N}$ such that

$$X \subseteq \bigcup_{n \in A} X \setminus E_n$$
$$= X \setminus E_M,$$

Where $M \in A$ is the maximal element in terms of set containment. But this implies

$$E_n = \emptyset$$

For every n such that $1 \le n \le M$, contradicting non-emptiness.

2 Compactness

(a) Closed subspaces of compact topological spaces need be compact.

Proof. Let X be a compact topological space. Suppose $Y \subseteq X$ is closed. We would like to show that Y is compact. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of Y. That is,

$$Y \subseteq \bigcup_{\alpha \in A} U_{\alpha}.$$

As $Y \subseteq X$ is closed, its complement in X, $X \setminus Y$, is open in X. Moreover, the union of the U_{α} together with $X \setminus Y$ forms an open cover for X, i.e.,

$$X \subseteq \bigcup_{\alpha \in A} U_{\alpha} \cup X \backslash Y.$$

Since X is compact, we know there exists a finite subset $B \subseteq A$ such that

$$X \subseteq \bigcup_{i \in B} U_{\alpha_i} \cup X \backslash Y$$

And since $Y \subseteq X$ we have that

$$Y \subseteq \bigcup_{i \in B} U_{\alpha_i}$$

thus we have found a finite subcover of $\{U_{\alpha}\}$ that cover Y and so Y is compact as needed.

< back2top>

(b) Compact subspaces of Hausdorff topological spaces need be closed.

Proof. Let X be a Hausdorff topological space. Suppose $Y \subseteq X$ is compact. We wish to show Y is closed in X. It suffices to show its complement $X \setminus Y$ is open in X. Let $x \in X \setminus Y$, as X is Hausdorff, for each $y \in Y$ there exists open sets $U_y \subseteq X \setminus Y$, $V_y \subseteq Y$ with $x \in U_y$, $y \in V_y$ such that

$$U_y \cap V_y = \emptyset$$
.

Since $V_y \subseteq Y$ is open, $\{V_y \mid y \in Y\}$ is an open cover for Y, that is,

$$Y \subseteq \bigcup_{y \in Y} V_y.$$

By compactness of Y there exists a finite subset $A \subseteq Y$ such that

$$Y \subseteq \bigcup_{y \in A} V_y = V.$$

Then the finite intersection $U = \bigcap_{y \in A} U_y$ is an open neighborhood of x disjoint from V, namely

$$x \in U \subseteq X \backslash Y$$

and thus $X \setminus Y$ is open in X forcing $Y \subseteq X$ to be closed as needed.

< back2top>

(c) The image of a compact topological space need be compact under a continuous map.

Proof. Let $f: X \to Y$ be a continuous map between topological spaces. Suppose X is compact. We would like to show that $f(X) \subseteq Y$ is compact. Let $\{V_\alpha\}_{\alpha \in A}$ be an arbitrary open cover for f(X). That is,

$$f(X) \subseteq \bigcup_{\alpha \in A} V_{\alpha}$$

where $V_{\alpha} \subseteq Y$ is open for each $\alpha \in A$. As f is continuous, we have that

$$f^{-1}(V_{\alpha}) \subseteq X$$

is open for each $\alpha \in A$ as well. Then $\{f^{-1}(V_\alpha)\}_{\alpha \in A}$ is an open cover for X and since X is compact we have the existence of a finite subset $B \subseteq A$ such that

$$X \subseteq \bigcup_{b \in B} f^{-1}(V_b)$$

then it follows that

$$f(X) \subseteq \bigcup_{b \in B} V_b$$

thus f(X) is compact.

3. Regular space equivalence

(a) Define a regular space.

Proof. A topological space X is called *regular* or T_3 if $\forall x \in X$ and any closed subset $F \subset X$ not containing $x, \exists U, V \subset X$ open with $x \in U, F \subset V \ni$

$$U \cap V = \emptyset$$
.

Namely, we can separate points from closed sets using open sets.

Assume X is Hausdorff. Then X is regular if and only if for every $x \in X$ with neighborhood $U \subseteq X$ there exists $V \subseteq X$ open with $x \in V$ such that $\overline{V} \subset U$.

Proof. Let X be a Hausdorff topological space. Suppose first that X is also regular. Let $x \in X$ and let $U_x \subseteq X$ be an open neighborhood of x. Then $F = X \setminus U_x$ is closed by definition. Since X is a regular space we can separate x and F with open subsets of X, that is, there exists $V, W \subseteq X$ open with $x \in V, F \subset W$ such that

$$V \cap W = \emptyset$$
.

As $x \in U_x$ we have that

$$V \cap F = \emptyset$$

forcing $\overline{V} \subseteq U_x$ as needed.

Next suppose for each $x \in X$ and open neighborhood of x say $U_x \subseteq X$ there exists an open neighborhood $V \subseteq X$ with $x \in V$ such that $\overline{V} \subseteq U_x$. Let $x \in X \setminus F$ where $F \subseteq X$ is closed. We wish to separate these via open subsets of X. As F is closed it follows that $X \setminus F \subseteq X$ is open. Then by our assumption we are guaranteed the existence of an open set $V \subseteq X$ such that

$$\overline{V} \subseteq X \backslash F$$
.

Here $x \in V$ is an open neighborhood of x and similarly $X \setminus \overline{V}$ is an open set containing F such that

$$V\cap X\backslash \overline{V}=\emptyset$$

thus X is regular as needed.

4. Non-disjoint union of connected is connected

(a) Let $\{X_{\alpha}\}_{{\alpha}\in I}$ be a collection of topological spaces. If for each ${\alpha}\in I$ X_{α} is connected and

$$\bigcap_{\alpha \in I} X_{\alpha} \neq \emptyset,$$

then we have that

$$\bigcup_{\alpha \in I} X_{\alpha}$$

is connected as well.

Note that this fails if we swap the conclusions union with intersection, take $X_1 := S^1, X_2 := \{(x,y) : x = y \in \mathbb{R}\}$, so the circle and the line, their union is connected, their intersection is two disjoint points however.

Proof. First, Recall the Connected lemma:

Let (X, τ) be a topological space. If $A \cup B$ is a separation of the space and $Y \subset X$ is a connected subspace, then Y lies entirely in A or B.

The proof of this is in Exercise 16. Now assume towards a contradiction that $\bigcup_{\alpha \in I}$ is disconnected. That is, there is a separation. I.e.,

$$\bigcup_{\alpha \in I} X_{\alpha} = A \cup B$$

Where $A, B \in \tau$ are non-empty and disjoint. Since the intersection of the X_{α} is non-empty, let $x \in \bigcap_{\alpha \in I} X_{\alpha}$, then $x \in A$ or in B, let us say $x \in A$. But then B is non-empty thus there exists some $y \in B$ But then $y \in X_{\beta}$ for some $\beta \in I$ and also $x \in X_{\beta}$ contradicting the connected lemma as X_{β} is connected it must lie entirely in A or B and so $\bigcup_{\alpha \in I} X_{\alpha}$ is connected.

< back2top>

(b) The image of a connected space under continuous function need be connected.

Proof. Let $f: X \to Y$ be a continuous map of topological space. Suppose that X is connected. We wish to show that f(X) is connected as well. Let us suppose towards a contradiction that f(X) has a separation, that is,

$$f(X) = A \cup B$$

where $A, B \subseteq f(X)$ are both nonempty and open. Since f is continuous, $f^{-1}(A), f^{-1}(B) \subset X$ are both open. Moreover, their union is all of X and thus we have formed a separation of X which is connected, a contradiction and so f(X) is connected.

< back2top>

(c) Let X, Y be connected. Show $X \times Y$ is connected in the product topology.

Proof. Suppose X,Y are connected topological spaces. We wish to show that with respect to the product topology, $X \times Y$ is connected as well. Fix $(x_0,y_0) \in X \times Y$. As X is connected and homeomorphic to the slice $X \times \{y_0\}$, it follows that $X \times \{y_0\}$ is connected. Similarly, for each $x \in X$ we have that the slice $\{x\} \times Y$ is connected as well. We can now define

$$T_x = (X \times \{y_0\}) \cup (\{x\} \times Y)$$

Then $\bigcup_{x\in X} T_x$ is connected by part (a) as the intersection consists of (x, y_0) . As $\bigcup_{x\in X} T_x$ is all of $X\times Y$, we are done.

5. Equivalence for closed in metric space

Let (X, d) be a metric space with $C \subset X$ and some $p \in X$ a point. Prove C is closed if and only if $C \cap \overline{B_R(p)}$ is closed for any R > 0 where

$$\overline{B_R(p)} = \{ x \in X | d(x, p) \le R \}.$$

Proof. First suppose C is closed. Since arbitrary intersections of closed spaces need be closed we have that the intersection

$$C \cap \overline{B_R(p)}$$

is closed as $\overline{B_r(p)}$ is closed by definition.

On the other hand suppose that for some $p \in X$ and any R > 0 the intersection

$$C \cap \overline{B_R(p)}$$

is closed. We wish to show that C is closed, i.e., $C = \overline{C}$. Clearly we have that $C \subseteq \overline{C}$ thus we are left to show that $\overline{C} \subseteq C$. So let $x \in \overline{C}$ be a limit point. We must show $x \in C$. As X is a metric space we can put x in an epsilon ball, that is,

$$x \in B_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \}.$$

As $C \cap \overline{B_R(p)}$ is closed for any R, we can take $R = d(x,p) + \varepsilon$. Then we have that

$$B_{\varepsilon}(x) \subset B_R(p) \subset \overline{B_R(p)}$$
.

As x is a limit point of C, $B_{\varepsilon}(x)\setminus\{x\}$ intersects C non-trivially thus x is a limit point of $C\cap\overline{B_R(p)}$ hence $x\in C\cap\overline{B_R(p)}$ forcing $x\in C$ as needed and C is closed.

6. Hausdorff & second-countable

(a) Define second-countable

Proof. A topological space X is said to be second-countable if it has a countable basis. \Box

(b) Define Hausdorff.

Proof. A topological space X is said to be Hausdorff if for any pair of distinct elements $x, y \in X$ we can find open subsets of X say U, V with $x \in U, y \in V$ such that

$$U \cap V = \emptyset$$
.

(c) Prove or disprove: Every metric space equipped with the metric topology is Hausdorff.

Proof. Let (X, d) be a metric space. Then d induces a topology on X, namely the collection of epsilon balls, that is,

$$\{B_{\varepsilon}(x) \mid x \in X, \varepsilon > 0\}.$$

This collection forms a basis for a topology on X. I claim X is Hausdorff. Let $x, y \in X$ be distinct. Then we have that d(x, y) > 0 so denote this distance by ε_0 . Then we have basis elements $x \in B_{\frac{\varepsilon_0}{2}(x)}, y \in B_{\frac{\varepsilon_0}{2}(y)}$. It suffices to show

$$B_{\frac{\varepsilon_0}{2}(x)} \cap B_{\frac{\varepsilon_0}{2}(y)} = \emptyset$$

Suppose there exists some $z \in B_{\frac{\varepsilon_0}{2}(x)} \cup B_{\frac{\varepsilon_0}{2}(y)}$ then $d(x,z), d(z,y) < \frac{\varepsilon_0}{2}$. And so by the triangle inequality we have

$$\begin{array}{rcl} \varepsilon_0 & = & d(x,y) \\ & \leq & d(x,z) + d(z,y) \\ & < & \frac{\varepsilon_0}{2} + \frac{\varepsilon_0}{2} \\ & = & \varepsilon_0 \end{array}$$

a contradiction forcing the intersection to be empty as needed thus (X, d) is Hausdorff.

(d) Prove or disprove: Every metric space equipped with the metric topology is second-countable.

Proof. Consider \mathbb{R} as a metric space equipped with discrete metric, that is

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Here the basis elements consist of singleton sets. \mathbb{R} has an uncountable number of points, the basis (the singletons) is uncountable thus not second-countable.

7. The product topology

Consider the Product space $Y = \prod_{n=1}^{\infty} [0,1]$ with the product topology.

(a) Prove Y is Hausdorff.

Proof. As [0,1] is Hausdorff (It is a subspace of the reals which are Hausdorff and it is easy to check subspaces of Hausdorff under subspace topology need be Hausdorff as well) we verify that given a collection $\{(X_i, \tau_i)\}_{i \in I}$ of topological spaces, if they are all assumed to be Hausdorff, then their product

$$(\Pi_{i\in I}X_i, \tau_X)$$

(for short we denote $\Pi_{i \in I} X_i$ by X) is Hausdorff when τ_X is the product topology. Before proceeding, small lemma:

<u>Lemma</u> If A, B, C are sets such that $B \cap C = \emptyset$, then $A \times B \cap A \times C = \emptyset$ as well and this extends to uncountably infinite case as well.

Now let $x, y \in X$ be distinct. Then there exists (at least one) some $j \in I$ our indexing set such that the components do not agree here, that is, for $x_j, y_j \in X_j$ we have

$$x_i \neq y_i$$
.

As X_j is Hausdorff, then there exists $U_j, V_j \in \tau_j$ with $x_j \in U_j, y_j \in V_j$ such that

$$U_i \cap V_i = \emptyset.$$

Then by the definition of the product topology, for each $i \in I \setminus \{j\}$ we can take

$$U_i = V_i = X_i$$

And then define the neighborhoods of x, y as

$$U = \prod_{i \in I} U_i, V = \prod_{i \in I} V_i.$$

and since the U_i, V_i are disjoint at j together with our lemma we have that

$$U \cap V = \emptyset$$

with $x \in U, y \in V$ thus (X, τ_X) is Hausdorff as needed.

(b) Prove $Y = \prod_{n \in \mathbb{N}} [0, 1]_n$ is separable.

Proof. To show Y is separable, we construct a countable subset that is dense in Y. Consider the following subset of Y,

$$A := \{(a_1, a_2, ...) \in Y | \exists N \in \mathbb{N} \ni a_i \in \mathbb{Q} \cap [0, 1], 1 < i < N \}$$

I.e., all sequences with finitely many rational coordinates. I claim A is dense in Y, to see this we show every open set of Y intersects A nontrivially. Let $x \in U \in \tau_Y$. If $x \in A$ then we are done as

 $x \in U \cap A$. Suppose $x \in Y \setminus A$. As we are in the product topology, our basis elements are of the form

$$\Pi_{n=1}^{\infty} U_n \subset U$$

Where $U_n = [0,1]$ for all but finitely many n. And for those finitely many n we have the proper containment $U_n \subset [0,1]$. If we let $x = (x_1, x_2, ...)$, then for finitely many values, call them i, we have

$$x_i \in U_i \subset [0,1]$$

As \mathbb{Q} is dense in \mathbb{R} , we have for these finite many i, there exists some rational $q_i \in \mathbb{Q}$ such that

$$q_i \in U_i$$

Then consider the point $y = (y_1, y_2, ...)$ such that

$$y_i = q_i; i \le n, y_n = x_n; \forall n > i$$

Then $y \in A$ and since U was arbitrary we have that A is dense in Y.

8. Continuity When restricted

(a) Let (X, τ_X) be a topological space. If we can write $X = \bigcup_{n \in \mathbb{N}} W_n$ where for each $n \in \mathbb{N}$

$$f \upharpoonright_: W_n \to Y$$

is continuous, then

$$f: X \to Y$$

is continuous.

Proof. Let

$$f: X \to Y$$

be a map of topological spaces with topologies τ_X, τ_Y respectively. Let $V \in \tau_Y$. Note that

$$\begin{array}{rcl} f \upharpoonright_k^{-1} (V) & = & f^{-1}(V) \cap W_k \\ & \in & \tau_X. \end{array}$$

As $f \upharpoonright_n$ is continuous for every n. But then we can write

$$f^{-1}(V) = \bigcup_{k \in \mathbb{N}} f^{-1}(V) \cap W_k$$

 $\in \tau_X$

as any union of open need be open thus f is continuous.

(b) Let (X, τ_X) be a topological space. If $X = A \cup B$ where A, B are closed and $f \upharpoonright_A : A \to Y, f \upharpoonright_B : B \to Y$ are continuous. Prove

$$f: X \to Y$$

is continuous.

Proof. Let $V \subset Y$ be closed, then just as before, since A is a subset of X, then for all subsets of Y which V is, we have

$$f^{-1}(V) \cap A = (f|_A)^{-1}(V)$$

Holds for when $x \in A$ and $f(x) \in V$. As $V \subset Y$ is closed and the restrictions are continuous, we have that

$$(f|_A)^{-1}(V) \cap A$$
$$(f|_B)^{-1}(V) \cap B$$

Are both closed in A, B respectively thus both are closed in X as well and we have

$$\begin{split} f^{-1}(V) &= f^{-1}(V) \cap X \\ &= f^{-1}(V) \cap (A \cup B) \\ &= (f^{-1}(V) \cap A) \cup (f^{-1}(V) \cap B) \end{split}$$

Which is a finite union of closed thus $f^{-1}(V) \subset X$ is closed as needed thus f is continuous.

(c) Assume $X = \bigcup_{k=1}^{\infty} E_k$ where the E_k are all closed in X such that each $E_k \to Y$ is continuous, is $X \to Y$ also continuous?

Proof. False. Consider the map

$$f: \mathbb{Z} \to \mathbb{R}$$

where $\mathbb Z$ is endowed wiith cofinite topology and $\mathbb R$ has the standard topology. Let

$$\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} \{n\}$$

So our E_k are just singletons of integers, then $f|_{E_k}$ is continuous for each k.

To see this, take $C \subset \mathbb{R}$ closed, then we have

$$f|_{E_k}^{-1}(C) = f^{-1}(C) \cap E_k$$

which is either just a singleton or the empty set both of which are closed in \mathbb{Z} with cofinite topology.

On the other hand, f is not continuous as any open set $(a, b) \subset \mathbb{R}$ has a pull back with infinite complement thus not open in \mathbb{Z} with cofinite topology.

9. Product Topology

(a) Define the product topology on the product $X = \prod_{i=1}^{\infty} X_i$.

Proof. The product topology on X is the product

$$\Pi_{j=1}^{\infty} U_j$$

Where $U_j \subseteq X_j$ are open and

$$U_i = X_i$$

 \forall but finitely many j, for finite j,

$$U_i \subsetneq X_i$$

proper subset. More formally, if π_{β} is projection onto the β th coordinate, then

$$S_{\beta} = \{\pi_{\beta}^{-1}(U_{\beta})|U_{\beta} \text{ is open in } X_{\beta}\}$$

Then the topology generated by $\bigcup_{\beta \in J} S_{\beta}$ is the product topology.

(b) Show the projection map $p_i: X_1 \times X_2 \to X_i$ is an open map for i = 1, 2.

Proof. For each -=1,2, let τ_i denote the topology on X_i . Let $U \in \tau_\alpha$, then by the definition of the product topology we can write

$$U = \bigcup_{j \in J} \bigcap_{k=1}^{n_j} p_{i_{k,j}}^{-1} U_{k,j},$$

where J is an arbitrary indexing set, $n_j \in \mathbb{N}$ and $i_{k,j} = 1, 2$. Then for every i = 1, 2, define $V_{i,k,j} \in \tau_i$ via

$$V_{i,k,j} = \begin{cases} U_{k,j} & ; i = i_{k,j} \\ X_i & ; i \neq i_{k,j} \end{cases}$$

By the definition of projection we have

$$p_{i_{k,j}}^{-1}(U_{k,j}) = V_{1,k,j} \times V_{2,k,j}.$$

And without any loss of generality we can suppose i = 1 and compute

$$p_{1}(U) = \bigcup_{j \in J} p_{1}(\bigcap_{k=1}^{n_{j}} p_{i_{k,j}}^{-1}(U_{k,j}))$$

$$= \bigcup_{j \in J} p_{1}(\bigcap_{k=1}^{n_{j}} (V_{1,k,j} \times V_{2,k,j}))$$

$$= \bigcup_{j \in J} p_{1}(\bigcap_{k=1}^{n_{j}} V_{1,k,j} \times \bigcap_{k=1}^{n_{j}} V_{2,k,j})$$

$$= \bigcup_{j \in J} \bigcap_{k=1}^{n_{j}} V_{1,k,j}$$

$$\in \tau_{1}$$

and thus p_1 is an open map. The same proof works for p_2 .

(c) If Y is Hausdorff and

$$f: X \to Y$$

is continuous, prove the graph

$$\Delta = \{(x, f(x)) | x \in X\}$$

is closed in $X \times Y$.

Proof. We show Δ^c is open instead.

Let $(x, y) \in X \times Y \setminus \Delta$, then $y \neq f(x)$.

As $y, f(x) \in Y$ which is Hausdorff they can be separated via open sets of Y.

That is, $\exists U, V \subset Y$ open with $y \in U, f(x) \in V$ s.t.

$$U \cap V = \emptyset$$

By Munkres Theorem 18.1(4) since f is continuous, $\exists W \subseteq X \text{ with } x \in W \text{ s.t.}$

$$f(W) \subseteq V$$

Then $W \times U$ is an open neighborhood of (x, y) disjoint from Δ thus $X \times Y \setminus \Delta = \Delta^c$ is open, and therefore Δ is closed.

(d) If Y is Hausdorff and

$$f: X \to Y$$

is continuous, prove

$$G: X \to X \times Y$$

defined via

$$G(x) = (x, f(x))$$

is a closed map.

Proof. Let $C \subseteq X$ be closed, we wish to show

$$G(C) \subset X \times Y$$

is closed. Let $(x,y) \in X \times Y \setminus G(C)$, then $y \neq f(x)$ which are both in Y.

Since Y is Hausdorff, $\exists U, V \subseteq Y$ both open with $y \in U, f(x) \in V$ such that

$$U \cap V = \emptyset$$

As f is continuous however, $\exists W \subseteq X$ an open neighborhood of x such that

$$f(W) \subseteq V$$

Then $W \times U$ is an open neighborhood of (x, y) disjoint from G(C), thus $G(C)^c$ is open forcing G(C) to be closed \therefore G is a closed map.

10. Homeomorphisms

(a) Prove (0,1) with the subspace topology is homeomorphic to \mathbb{R} with the standard topology.

Proof. Let

$$f:(0,1)\to(-\frac{\pi}{2},\frac{\pi}{2})$$

be defined via

$$f(x) := \pi x - \frac{\pi}{2}$$

and let

$$g:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$$

be defined via

$$g(x) := \tan x$$

Then

$$h:(0,1)\to\mathbb{R}$$

defined via

$$\begin{array}{rcl} h(x) & := & g(f(x)) \\ & = & \tan(\pi x - \frac{\pi}{2}) \end{array}$$

is the desired homeomorphism with inverse defined via

$$h^{-1}(x) := \frac{\tan^{-1}(x)}{\pi} + \frac{1}{2}$$

By calulus we are done.

(b) Assume X, Y are metric spaces that are homeomorphic. Prove or give counterexample: X complete implies Y complete, that is, is completeness preserved under cont?

Proof. Part (a)
$$\Box$$

(c) Prove $[a, b) \ncong (c, d)$.

Proof. First a small lemma (proof left to the interested reader; HINT: First restrict the domain, then restrict the range.)

<u>Lemma</u>: If

$$f: X \to Y$$

is a continuous map of topological spaces, then for any $x \in X$,

$$\overline{f}: X \setminus \{x\} \to Y \setminus \{f(a)\}$$

is continuous as well. Morveover, if f is a homeomorphism, then \overline{f} is a homeomorphism as well.

Now let us assume $[a,b) \cong (c,d)$. Then there exists a homeomorphism

$$g:[a,b)\to(c,d).$$

By our lemma above

$$\overline{g}:[a,b)\setminus\{a\}\to(c,d)\setminus\{g(a)\}$$

is a homeomorphism as well. I.e.,

$$g:(a,b)\to(c,g(a))\cup(g(a),d)$$

is a homeomorphism. Note that the domain is still connected while the range space is clearly disconnected and since connectedness is a topological property, this contradicts continuity of \overline{g} and thus $[a,b)\ncong(c,d)$ as needed. One can check that the range space in fact has a separation.

 $<\!back2top\!>$

11. Topology of finite point-set

Let $X = \{1, 2, 3, 4\}$ be given by the topology $\tau = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$ (a) Show any two disjoint closed sets have disjoint open neighborhoods

Proof. By definition, the closed sets in X are taken to be the complements of the given open sets, that is,

$$C = \{X, \emptyset, \{2, 3, 4\}, \{3, 4\}, \{2, 4\}, \{4\}\}\$$

are all of the closed subspaces of X. As 4 is an element of every member of \mathcal{C} except \emptyset and \emptyset is disjoint with every non-empty set, the pairs of disjoint closed subspaces are

$$X, \emptyset$$
 {2, 3, 4}, \emptyset {3, 4}, \emptyset {2, 4}, \emptyset {4}, \emptyset

where the neighborhood X contains each closed set except for \emptyset and clearly \emptyset is its own neighborhood which is disjoint from X as needed.

(b) Show (X, τ) is not T_1

Proof. Consider the elements 1, 2. The open neighborhoods of 2 are

$$\{1,2\},\{1,2,3\}.$$

Since both of these contain 1 we cannot find open sets for 1 and 2 that do not contain each other thus (X, τ) is not T_1 .

(c) Let $A = \{1, 2, 3\} \subset X$ be endowed with the subspace topology. Find disjoint closed subsets of A that do not have disjoint neighborhoods.

Proof. As A is endowed with the subspace topology we can write out the topology on A as follows

$$\tau_A = \{\emptyset, A, \{1\}, \{1, 2\}, \{1, 3\}\}.$$

Then the closed subsets of A are given by

$$C_A = \{A, \emptyset, \{2, 3\}, \{3\}, \{2\}\}.$$

Then $\{2\}, \{3\}$ are disjoint closed sets in A. The neighborhoods of $\{2\}$ are

$$A, \{1, 2\},$$

and the neighborhoods of {3} are

$$A, \{1, 3\}.$$

And since $\{1,2\} \cap \{1,3\} = \{1\}$ is non-empty, we have found disjoint closed subsets of A with non disjoint neighborhoods.

12. Closures connected/path

(a) If $X \subseteq Z$ is a connected subset of a topological space, show that $\overline{X} \subseteq Z$ is connected as well.

Proof. Let $X \subseteq Z$ be a connected subspace of a topological space. Suppose towards a contradiction that \overline{X} is not connected. Then there exists a separation of \overline{X} , that is,

$$\overline{X} = A \cup B$$
,

 $A, B \in \tau_{\overline{X}}$ non-empty and disjoint. As X is connected, by the connected Lemma we have WLOG that $X = A \cap X$. As B is non-empty, it contains some b, namely b is a limit point of X and thus B is an open set containing a limit point of X thus it must intersect $X \subset A$ non-trivially contradicting

$$A \cap B = \emptyset$$
.

Thus \overline{X} is connected.

(b) Show (a) fails for path-connected subspaces.

Proof. Take the topologist's sin curve. That is, the function

$$f: \mathbb{R}^+ \to [-1, 1]$$

which is defined via

$$x \mapsto \sin(\frac{1}{x}).$$

Then $\{(x,y) \mid y = \sin(\frac{1}{x})\}$ is path-connected, however the closure given via

$$\{(x,y) \in \mathbb{R}^2 \mid y = \sin(\frac{1}{x})\} \cup \{0\} \times [-1,1]$$

is not path-connected.

13. Cofinite Topology

Let τ be the finite complement topology on \mathbb{R} . That is, $U \subseteq \mathbb{R}$ is open if and only if U is empty or $\mathbb{R} \setminus U$ if finite.

(a) Is (\mathbb{R}, τ) Hausdorff?

Proof. I claim (\mathbb{R}, τ) is not Hausdorff. Let $x, y \in \mathbb{R}$ and $U \in \tau$ be a neighborhood of x. Then $\mathbb{R} \setminus U$ is finite so we can write

$$\mathbb{R}\backslash U=\{p_1,...,p_n\}.$$

Similarly we can let $V \in \tau$ be a neighborhood of y and write

$$\mathbb{R}\backslash V=\{q_1,...,q_m\}.$$

We would like for U, V to have a non-empty intersection. As \mathbb{R} is infinite, we can find a $z \in \mathbb{R}$ such that $z \neq p_i$ for $1 \leq i \leq n$ and $z \neq q_j$ for $1 \leq j \leq m$. This would imply $z \in U \cap V$ and so (\mathbb{R}, τ) is not Hausdorff.

(b) Is (\mathbb{R}, τ) compact?

Proof. I claim (\mathbb{R}, τ) is compact. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an arbitrary open cover for \mathbb{R} , that is

$$\mathbb{R} \subseteq \bigcup_{\alpha \in A} U_{\alpha}.$$

For each $\alpha \in A$ we know $\mathbb{R} \setminus U_{\alpha}$ is finite, in particular we can take some $\beta \in A$ and so $\mathbb{R} \setminus U_{\beta}$ is finite. Then for each $x \in \mathbb{R} \setminus U_{\beta}$ let $U_x \in \tau$ be the neighborhood containing x. Then it follows that

$$\mathbb{R} \subseteq U_{\beta} \cup \{U_x \mid x \in \mathbb{R} \backslash U_{\beta}\}\$$

is a finite sub-cover of our arbitrary covering thus (\mathbb{R},τ) is Hausdorff as needed.

14. Sequence of closed

Let $F_1, F_2, ...$ be a sequence of closed subsets of a topological space X. Suppose that for each $x \in X$ we can find a neighborhood of x say N_x such that $N_x \cap F_j \neq \emptyset$ for onlY finitely many j values. Prove $\bigcup_{j=1}^{\infty} F_j$ is closed.

Proof. We will show the complement with respect to the entire space is open. That is, we show

$$X \setminus \bigcup_{j=1}^{\infty} F_j$$

Let $x_0 \in X \setminus \bigcup_{j=1}^{\infty} F_j$ be arbitrary. We must find a neighborhood of x that is disjoint from $\bigcup_{j=1}^{\infty} F_j$. As $x_0 \in X$ we are guaranteed the existence of neighborhood N_{x_0} such that

$$N_{x_0} \cap F_j \neq \emptyset$$

for finitely many j values. That is, there exists a finite set J such that

$$N_{x_0} \bigcap_{j \in J} F_j \neq \emptyset.$$

Then I claim the open neighborhood of x_0 that is disjoint from $\bigcup_{j=1}^{\infty} F_j$ is given by the intersection

$$N_{x_0} \bigcap_{j \in J} X \backslash F_j$$
.

Clearly we have that $x_0 \in N_{x_0} \bigcap_{j \in J} X \backslash F_j$ and is clearly disjoint from $\bigcup_{j=1}^{\infty} F_j$. Moreover, as τ_X is closed under finite intersections we have that $N_{x_0} \bigcap_{j \in J} X \backslash F_j \in \tau_X$ as needed for our neighborhood of x_0 and so $X \backslash \bigcup_{j=1}^{\infty} F_j$ is open thus $\bigcup_{j=1}^{\infty} F_j$ is closed.

back2top>

15 (Incomplete)

Let (X, τ) be a topological space and let \mathcal{C} be the collection of closed sets. A filter on \mathcal{C} is a collection \mathcal{F} of sets from \mathcal{C} such that (1) $\emptyset \notin \mathcal{F}$, (2) If $C_1, C_2 \in \mathcal{F}$, then $C_1 \cap C_2 \in \mathcal{F}$, (3) If $C_1 \subset C_2$ with $C_1 \in \mathcal{F}$ and $C_2 \in \mathcal{C}$, then $C_2 \in \mathcal{F}$. Show that if each filter on \mathcal{C} has non-empty intersection, then (X, τ) is compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an arbitrary open cover for X. That is,

$$X\subseteq \bigcup_{\alpha\in A}U_{\alpha},$$

where $U_{\alpha} \in \tau$ for each α . Then by definition we have for each $\alpha \in A$ that $X \setminus U_{\alpha} \in \mathcal{C}$. Let $\mathcal{B} = \{B \in \tau \mid B \subseteq \bigcup_{i \in I} U_{\alpha_i}\}$ for some finite $I \subset A$. Then $X \setminus B \in \mathcal{C}$ for each $B \in \mathcal{B}$. I claim that

$$\mathcal{F}_{\beta} = \{ X \backslash B \mid B \in \mathcal{B} \}$$

defines a filter on \mathcal{C} . For (1), let us suppose $\emptyset \in \mathcal{F}_{\beta}$, then $\emptyset = X \setminus B$ for some $B \in \mathcal{B}$ which implies B = X and since $B \in \mathcal{B}$, we have that $X \subseteq \bigcup_{i \in I} U_{\alpha_i}$.

16. Connected Lemma

Let (X, τ) be a a topological space and $Y \subset X$ a connected subspace endowed with the subspace topology. If $A \cup B$ forms a separation of X, then $Y \subset A$ or $Y \subset B$.

Proof. As $A \cup B$ forms a separation, we have that

$$X = A \cup B$$

where $A, B \in \tau$ are both non-empty and disjoint as a pair. Let us suppose towards a contradiction that there exists $a, b \in Y$ such that $a \in A$ and $b \in B$. I claim then that

$$Y \cap X = Y \cap (A \cup B)$$

= $(Y \cap A) \cup (Y \cap B)$

forms a separation of Y. Since Y is endowed with the subspace topology and $A, B \in \tau$ we have that $Y \cap A, Y \cap B \in \tau_Y$. That is, they are both open in Y. If they were not disjoint then there would exists some α such that

$$\alpha \in (Y \cap A) \cap (Y \cap B)$$

contradicting A, B being disjoint as a pair and thus $Y \cap A, Y \cap B$ are disjoint as well. Lastly we know by existence of a, b that they are non-empty thus together they form a separation of Y which is connected a contradiction thus Y must lie entirely within A or B.

17. Arbitrary collection of topologies on a set

(a) Let X be set and $\{\tau_{\alpha}\}_{{\alpha}\in A}$ be a collection of topologies on X. Prove $\bigcap_{{\alpha}\in A} \tau_{\alpha}$ is a topology on X.

Proof. Suppose for each $\alpha \in A$ we have that (X, τ_{α}) is a topological space, we must show $(X, \bigcap_{\alpha \in A} \tau_{\alpha})$ is also a topological space. First we check $\emptyset, X \in \bigcap_{\alpha \in A} \tau_{\alpha}$. Since for each $\alpha \in A$, τ_{α} is a topology on X, we have for every $\alpha \in A$ that $\emptyset, X \in \tau_{\alpha}$ and thus

$$\emptyset, X \in \bigcap_{\alpha \in A} \tau_{\alpha}$$

as needed. Next suppose that

$$U_1, U_2, ..., U_n \in \bigcap_{\alpha \in A} \tau_{\alpha}.$$

Then for every $\alpha \in A$ we have

$$U_1, U_2, ..., U_n \in \tau_{\alpha}$$
.

As for each $\alpha \in A$, τ_{α} is a topology on X, by the closure property we get

$$\bigcap_{i=1}^{n} U_i \in \bigcap_{\alpha \in A} \tau_{\alpha}.$$

Lastly we must check arbitrary unions are closed. That is if for every $\beta \in B$ some indexing set let us suppose

$$U_{\beta} \in \bigcap_{\alpha \in A} \tau_{\alpha}.$$

Then for every $\alpha \in A$

$$U_{\beta} \in \tau_{\alpha}$$

which are each a topology as noted before thus by closure property of arbitrary unions we get (for every $\alpha \in A$, that is.)

$$\bigcup_{\beta \in B} U_{\beta} \in \tau_{\alpha},$$

which gives us

$$\bigcup_{\beta \in B} U_{\beta} \in \bigcap_{\alpha \in A} \tau_{\alpha},$$

as needed making $(X, \bigcap_{\alpha \in A} \tau_{\alpha})$ a topological space.

(b) Given an example to show $\bigcup_{\alpha \in A} \tau_{\alpha}$ is not necessarily a topology given τ_{α} is a topology for each $\alpha \in A$.

Proof. Let our set X be given as the following three point set

$$X = \{a, b, c\}.$$

Consider the following two topologies on X,

$$\tau_1 = \{\emptyset, X, \{a\}\}, \tau_2 = \{\emptyset, X, \{b\}\}.$$

Then their union is given by

$$\tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{b\}\}\$$

Which is not closed under even finite unions as

$$\{a\} \cup \{b\} \notin \tau_1 \cup \tau_2$$

Thus unions of topologies need not be a topology.

 $<\!back2top\!>$

18. Intervals in \mathbb{R} are connected

Prove intervals in \mathbb{R} are connected.

Proof. Let $I \subset \mathbb{R}$ be an interval. To show I is connected, we assume towards a contradiction that I is disconnected. That is, there is a separation of the interval

$$I = A \cup B$$

Where $A, B \in \tau_I$ (the topology on I when given the subspace topology inherited from $\mathbb{R}_{\text{standard}}$), non-empty and disjoint. Thus we are guaranteed existence of $a \in A$ and $b \in B$ such that

$$a \notin B, b \notin A$$
.

let $I_0 = [a, b]$. Note that $I_0 \subseteq I$. Then we can define

$$A_0 = A \cap I_0, B_0 = B \cap I_0.$$

Then $A_0 \cup B_0$ forms a separation of I_0 . To see this we already know they are non-empty by the existence of a, b. If they were not disjoint then there exists some $\alpha \in A \cap I_0 \cap B$ contradicting A, B being disjoint as they form a separation of I. Lastly since $A, B \in \tau_I$ we have that (in the subspace topology) $A \cap I_0, B \cap I_0 \in \tau_{I_0}$. Are both open. Note that $A_0 \subset \mathbb{R}$ is non-empty thus in inherits the least upper bound porperty so we can define

$$c := \sup(A_0).$$

However A_0 is closed because B_0 is open thus $c \in \overline{A_0}$, and so $c \notin B_0$. As c is the supremum of A_0 , for any $x \in I_0$ with c < x we have that $x \notin A_0$ thus we get

$$(x,b] \subset B_0$$
.

But then c (Keep in mind that $c \in I_0$) becomes a limit point of B_0 forcing $c \in \overline{B_0}$ and since $A_0 \cup B_0$ form a separtion of I_0 , $c \notin A_0$ contradicting

$$c \in I_0 = A_0 \cup B_0$$
.

thus I is connected as there is no separation.

19. Subspace of separable is separable

If X is a separable metric space, then so is any subspace Y.

Proof. Let (X, τ) be a topological space. Assume that X is separable, then we show for any subspace $Y \subseteq X$ that Y is separable. If Y = X or \emptyset we are done so we suppose $\emptyset \neq Y \subsetneq X$. We must construct a countable dense subset for Y. Let $A \subset X$ be a countable dense subset. Then we can write

$$A = \{a_1, a_2, ...\}$$

such that

$$\overline{A} = X$$
.

That is, for every $x \in X$ and $U_x \in \tau$ containing x we have

$$U_x \setminus \{x\} \cap A \neq \emptyset$$
.

If we take $y \in Y$, then for any given $\varepsilon > 0$ we have that

$$B_{\varepsilon}(y) \cap A \neq \emptyset$$
.

As the intersection is non-empty let $x_k \in B_{\varepsilon}(y) \cap A$. I.e.,

$$x_k \in \{B_{\varepsilon}(y) \cap A : \varepsilon \in \mathbb{R}^+\}.$$

Thus

$$B_{\varepsilon}(x_k) \cap Y \neq \emptyset.$$

Then we can take

$$\mathcal{B} = \{ (k, \varepsilon) : B_{\varepsilon}(x_k) \cap Y \neq \emptyset \},\$$

which is non-empty. So for each (k,ε) take $y_{k,\varepsilon} \in B_{\varepsilon}(x_k) \cap Y \neq \emptyset$ and let

$$Z = \{y_{k,\varepsilon} : (k,\varepsilon) \in \mathcal{B}\}.$$

And so we have that $Z \subset Y$ is countable since the elements are pulled from elements who are in A which is countable. We must show Z is dense in Y. That is, we must show

$$\overline{Z} = Y$$
.

Let $y \in Y$ and r > 0 and choose ε such that

$$\varepsilon \leq \frac{r}{2}$$
.

Then we can always find a $k \in \mathbb{N}$ such that

$$x_k \in B_{\varepsilon}(y)$$
.

Then $(k, \varepsilon) \in \mathcal{B}$ and by the triangle inequality,

$$\begin{array}{rcl} d(y,y_{k,\varepsilon}) & \leq & d(y,x_k) + d(x_k,y_{k,\varepsilon}) \\ & < & \varepsilon + \varepsilon \\ & = & 2\varepsilon \\ & < & r. \end{array}$$

Thus $y_{k,\varepsilon} \in B_r(y)$ and thus $y \in \overline{Z}$ making Z dense in Y so Y is separable.

20. Hausdorff Diagonal

Let (X, τ) be a topological space. Then X is Hausdorff if and only if $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

Proof. First let us assume that Δ is closed in $X \times X$. We wish to show X is Hausdorff so let $x, y \in X$ be arbitrary. As $\Delta \subset X \times X$ is closed, by definition we know that $\Delta^c \in \tau$. Then there exists a basis element of the form

$$U \times V \quad ; U, V \in \tau,$$

such that

$$(x,y) \in U \times V \subset \Delta^c$$
.

And so we have that

$$(U \times V) \cap \Delta = \emptyset$$

which gives us $x \in U, y \in V$. Lastly, I claim that

$$U \cap V = \emptyset$$
.

If not, then there exists some $z \in U \cap V$ forcing

$$(z, z) \in U \times V$$
.

Moreover, $(z, z) \in \Delta$ by definition, contradicting disjointess of $U \times V$ and Δ and so X is Hausdorff. On the other hand, let us assume that X is Hausdorff and we wish to show that $\Delta \subset X \times X$ is closed. We show this by showing Δ^c is open. Let $x, y \in \Delta^c$. As X is Hausdorff we are guaranteed the existence of $U_x, U_y \in \tau$ such that

$$U_x \cap U_y = \emptyset.$$

I claim that

$$(U_x \times U_y) \cap \Delta$$
.

Let $(a,b) \in (U_x \times U_y) \cap \Delta$ then $a = b \in U_x \cap U_y$ a contradiction and thus $\Delta^c \in \tau$ and so $\Delta \subset X \times X$ is closed.

 $<\!back2top\!>$

21. Equivalence of continuity in metric space

A function f is continuous using open sets if and only if it is continuous in the $\varepsilon - \delta$ sense. Let τ_X, τ_Y denote topologies in X and Y respectively.

Proof. Let X, Y be metric spaces and

$$f: X \to Y$$

a map between them. First we will assume f is open set continuous. That is, if $V \in \tau_Y$ then $f^{-1}(V) \in \tau_X$. Let $x_0 \in X$ and $\varepsilon > 0$ be given. Then $f(x_0) \in Y$ and we have that

$$(f(x_0) - \varepsilon, f(x_0) + \varepsilon) \in \tau_Y.$$

Then since f is continuous we get

$$x_0 \in f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon)) \in \tau_X.$$

So we can find a basis element containing x_0 fully contained in $f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon))$. I.e., there exists $\delta > 0$ such that

$$(x_0 - \delta, x_0 + \delta) \subset f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon)).$$

But then we have

$$f((x_0 - \delta, x_0 + \delta)) \subset (f(x_0) - \varepsilon, f(x_0) + \varepsilon).$$

Thus for any $\varepsilon > 0$ we can always find a $\delta > 0$ such that if

$$|x-x_0|<\delta$$

then

$$|f(x) - f(x_0)| < \varepsilon$$

making f continuous in the $\varepsilon - \delta$ senses.

On the other hand suppose that f is continuous in the $\varepsilon - \delta$ sense and let

$$f: X \to Y$$

be our map. Let $V \in \tau_Y$. We wish to show $f^{-1}(V) \in \tau_X$. Let $x_0 \in f^{-1}(V)$, then $f(x_0) \in V \in \tau_Y$ and so there exists an $\varepsilon > 0$ such that

$$f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset V.$$

And since f is continuous in $\varepsilon - \delta$ sense are guaranteed the existence of some $\delta > 0$ such that

$$(x_0 - \delta, x_0 + \delta) \subset f^{-1}(V).$$

This δ ball is the neighborhood of x_0 properly contained in $f^{-1}(V)$ thus $f^{-1}(V) \in \tau_X$ as needed. \square

22. Continuous function over compact space

(a) Show continuous over compact attain a max.

Proof. Let $f: X \to \mathbb{R}$ be continuous. Suppose that X is compact. Since compactness is a topological property, f(X) is compact in \mathbb{R} . By Heine-Borel, subsets of \mathbb{R} under the standard topology are compact if and only if they are both closed and bounded. Thus $f(X) \subset \mathbb{R}$ is closed and bounded. Since f(X) is bounded there exists some $M \in \mathbb{R}$ such that for every $x \in X$ we have that

$$|f(x)| \leq M$$
.

This tells us the supremum not only exists but is finite thus we can define

$$a := \sup_{x \in X} f(x)$$

Making a a limit point of f(X) which is closed in Y forcing $a \in f(X)$ then by definition we have that

$$f(x) \le a$$

for every $f(x) \in f(X)$. Hence f(X) attains its max.

(b) Show continuous over compact is uniform.

Proof. Let

$$f: X \to Y$$

be a map between metric spaces. If f is continuous and X is compact, prove that f is uniformly continuous. I.e., δ is not dependent on each point. Since f is continuous, for each $x \in X$ and any given $\varepsilon > 0$, there is a δ_x such that if

$$d_X(x,y) < \delta_x,$$

then

$$d_Y(f(x), f(y)) < \varepsilon.$$

In other words

$$f(B_{\delta_x}(x)) \subset B_{\frac{\varepsilon}{2}}(f(x)).$$
 (*)

We now have that $\{B_{\frac{\delta_x}{2}}(x)\}_{x\in X}$ is an open cover for X. As X is compact, we can find a finite subset $A\subset X$ such that

$$X\subseteq\bigcup_{x\in A}B_{\frac{\delta}{2}}(x).$$

Then we can take our δ to be

$$\delta = \min_{x \in A} (\frac{\delta_x}{2})$$

Then we have that $d_X(x,y) < \delta$, then since $x \in B_{\frac{\delta}{2}}(x)$ we have that $y \in B_{\delta_x}(x)$ (keep in mind $x \in A$). Lastly, if $d_X(x,y) < \delta$ I claim $d_Y(f(x),f(y)) < \varepsilon$. Applying (*) we get that

$$d_Y(f(x), f(y)) \leq d_Y(f(x), f(z)) + d_Y(f(z), f(y))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon,$$

as needed.

Alternate proof:

Proof. Let

$$f: X \to Y$$

be a map between metric spaces. If f is continuous and X is compact, then we show f is uniformly continuous. We say f is continuous in the $\varepsilon - \delta$ at $x \in X$ if for any $\varepsilon > 0$ we can find a $\delta > 0$ such that if

$$d_X(x,y) < \delta$$
,

then

$$d_Y(f(x), f(y)) < \varepsilon.$$

I claim that if f is $\frac{\varepsilon}{2} - \delta$ continuous, then f is $\varepsilon - \frac{\delta}{2}$ continuous. To see this, note that for every $x' \in B_{\frac{\delta}{2}}(x)$ and $y \in B_{\frac{\delta}{2}}(x')$ we have that $x', y \in B_{\delta}(x)$. Thus we can compute

$$\begin{array}{lcl} d_Y(f(x'),f(y)) & \leq & d_Y(f(x'),f(x)) + d_Y(f(x),f(y)) \\ & < & \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ & = & \varepsilon \end{array}$$

And we have proven the claim. Let $\varepsilon > 0$ and $x \in X$. By $\varepsilon - \delta$ continuity, there is some $n \in \mathbb{N}$ such that f is $\frac{\varepsilon}{2} - \frac{1}{n}$ continuous. Then by the claim, f is $\varepsilon - \frac{1}{2n}$ continuous. Moreover, as X is compact, it can be covered by a finite number of these balls so let n_0 be the max n value in the finite collection, then f is $\varepsilon - \frac{1}{2n_0}$ continuous on every neighborhood of X and thus on all of X. \square

23. Countable product of separable

Prove the countable product of separable is separable.

Proof. Let $\{X_n\}n \in \mathbb{N}$ be a collection of separable metric spaces. Let D_n be the associated countable dense subset and fix $x_n \in D_n$. Then for each $m \in \mathbb{N}$, we can define

$$E_m = \{ y \in D_n : y_n = x_n; \forall n \ge m \}$$
$$= \Pi_{1 \le n \le m} D_k \times \Pi_{n \ge m} \{x_n\}.$$

Which is clearly countable and thus $\bigcup_m E_m$ is countable as well. I claim that $\bigcup_m E_m$ is dense in $\prod_n X_n$. Note by the definition of product topology we can find a basis element of the form

$$B = \prod_{1 \le n \le m} V_n \times \prod_{n \ge m} X_n.$$

Where $V_n \subset X_n$ open. This is since for all but finitely many, the open sets are the whole space, in the product topology and thus

$$B\cap\bigcup_m E_m\neq\emptyset$$

forcing $\bigcup_m E_m$ to be dense in $\prod_n X_n$ as needed.

24. Closed intervals are compact

Prove for $a < b \in \mathbb{R}$ that [a, b] is compact.

Proof. Let [a,b] for a < b real numbers be an interval. We would like to show it is compact. Let $\{U_{\alpha}\}_{{\alpha} \in A}$ be an arbitrary open cover for [a,b] (A some arbitrary indexing set). That is,

$$[a,b] \subseteq \bigcup_{\alpha \in A} U_{\alpha}$$

Let

$$F := \{ x \in [a, b] \mid \exists B \subset A, \text{finite} \ni [a, x] \subseteq \bigcup_{\alpha \in B} U_{\alpha} \}.$$

Note that $F \neq \emptyset$. This is because $a \in F$ as the empty set is compact. We have that F is a non-empty subset of \mathbb{R} thus it inherits the least-upper-bound property. So we define

$$c := \sup F \in [a, b].$$

I claim that c = b. We know c > a because for $\varepsilon > 0$ we there is a neighborhood U_i such that

$$[a, a + \varepsilon] \subset U_i$$

Thus $x \ge a + \varepsilon$ and we know

$$a < c < b$$
.

Now take $\beta \in A$ such that $c \in U_{\beta}$ and choose $\varepsilon > 0$ such that

$$a \le c - \varepsilon < c < c + \varepsilon \le b$$

and

$$[c-\varepsilon,c+\varepsilon]\subset U_{\beta}$$

Since $c - \varepsilon$ is not an upper bound of F there is some c_0 with

$$c - \varepsilon \le c_0 \le c$$

such that $c_0 \in F$, which means $[a, c_0]$ has a finite sub-cover from our original cover. I.e.,

$$[a,c_0] \subset \bigcup_{\alpha \in B} U_\alpha$$

which implies

$$[a, c + \varepsilon] \subset \bigcup_{\alpha \in B} U_{\alpha} \cup U_{\beta}$$

Forcing $c + \varepsilon \in F$ contradicting the fact that c is the upper bound as $c < c + \varepsilon$. Thus $c = \sup F = b$. Lastly, we show $b \in F$. To see this, note for any $\varepsilon > 0$ we know that there exists some $\gamma \in A$ such that

$$[b-\varepsilon,b]\subset U_{\gamma}.$$

This gives us the existence of some $c_0 \in [b-\varepsilon,b]$ such that $c_0 \in F$. Then we can write

$$[a,b] = [a,c_0] \cup [b-\varepsilon,b]$$

$$\subseteq \bigcup_{\alpha \in B} U_\alpha \cup U_\gamma.$$

Thus $b \in F$ and we have found a finite sub-cover for [a,b] as needed.

 $<\!back2top\!>$

Counters

- 1. Any space with the indiscrete topology is connected. With the discrete topology everything is disconnected.
- 2. \mathbb{R}_l is not connected. Take $A = (-\infty, 0), B = [0, \infty)$ as separtion components.
- 3. \mathbb{R}_K is connected hausdorff, but not path connected, not compact, not regulars
- 4. [0,1] is no longer compact in the K-topology, K is an infinite subspace in closed unit with no limit point in [0,1].
- 5. In discrete topology, $\overline{\mathbb{Q}} = \mathbb{Q}$
- 6. $\overline{(0,1)}$ in \mathbb{R}_l is [0,1).
- 7. To show $\overline{\bigcup A_i}$ is not always contained in $\bigcup_i \overline{A_i}$ Consider $A = \{r_i\}$ is an enumeration of the rationals, then

$$\overline{\bigcup A_i} = \overline{\bigcup}\{r_i\} \\
= \overline{\mathbb{Q}} \\
= \mathbb{R} \\
\not\subseteq \overline{A_i} \\
= \overline{\bigcup}\{r_i\} \\
= \mathbb{Q}.$$

as needed.

- 8. To show $\overline{\operatorname{int}(A)}$ is not always contained in $\operatorname{int}(\overline{A})$ consider A = [0, 1).
- 9. To show $\operatorname{int}(\overline{A})$ is not always contained in $\overline{\operatorname{int}(A)}$ consider $A = \mathbb{Q}$.
- 10. indiscrete everything connected, in the discrete not.
- 11. To show $\overline{A \setminus B}$ is not contained in $\overline{A} \setminus \overline{B}$ take \mathbb{R} and \mathbb{Q} .
- 12. \mathbb{R} with cofinite topology is compact but not Hausdorff.
- 13. Note that the boundary of subset of a top space, $\overline{A} \setminus \text{int}(A)$ does not contain all limit points of A. Take A = [0, 1] Then the boundary is $\{0, 1\}$ but the set of limit points of A is all of A.
- 14. $\overline{\operatorname{int}(A)}$ does not contain all limit points of A take $A = \mathbb{Q}$. < back 2 top >